TY - JOUR

T1 - Interference stabilization of molecules with respect to photodissociation by a strong laser field

AU - Sukharev, M. E.

AU - Fedorov, M. V.

PY - 2002/1/1

Y1 - 2002/1/1

N2 - The ideas of interference stabilization of Rydberg atoms are adapted to photodissociation and stabilization of molecules by a strong laser field. Multiple strong-field-induced Raman-type transitions between vibrational levels of the ground electronic state are taken into account. For the molecular ion [Formula Presented] matrix elements of these transitions are calculated numerically and the arising equations for probability amplitudes to find a molecule at ground-state vibrational levels are solved (a) in stationary and (b) in the initial-value-problem formulations. In the stationary formulation, complex quasienergies and quasienergy zones are found. Specific values of the light frequency [Formula Presented] are found at which some quasienergy zones narrow with growing light intensity. Such an effect indicates a possibility of stabilization, which is confirmed to occur by a direct solution of the initial-value problem. The calculated total probability of photodissociation per pulse in the dependence on the light peak intensity is shown to decrease its growth with growing light intensity. Dynamics of photodissociation in the stabilization regime and structure of the arising vibrational wave packets are investigated and discussed. The method of description, in which Raman-type vibrational-vibrational transitions are taken into account is compared with that based on the ideas of the field-induced avoided crossing.

AB - The ideas of interference stabilization of Rydberg atoms are adapted to photodissociation and stabilization of molecules by a strong laser field. Multiple strong-field-induced Raman-type transitions between vibrational levels of the ground electronic state are taken into account. For the molecular ion [Formula Presented] matrix elements of these transitions are calculated numerically and the arising equations for probability amplitudes to find a molecule at ground-state vibrational levels are solved (a) in stationary and (b) in the initial-value-problem formulations. In the stationary formulation, complex quasienergies and quasienergy zones are found. Specific values of the light frequency [Formula Presented] are found at which some quasienergy zones narrow with growing light intensity. Such an effect indicates a possibility of stabilization, which is confirmed to occur by a direct solution of the initial-value problem. The calculated total probability of photodissociation per pulse in the dependence on the light peak intensity is shown to decrease its growth with growing light intensity. Dynamics of photodissociation in the stabilization regime and structure of the arising vibrational wave packets are investigated and discussed. The method of description, in which Raman-type vibrational-vibrational transitions are taken into account is compared with that based on the ideas of the field-induced avoided crossing.

UR - http://www.scopus.com/inward/record.url?scp=85037178318&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85037178318&partnerID=8YFLogxK

U2 - 10.1103/PhysRevA.65.033419

DO - 10.1103/PhysRevA.65.033419

M3 - Article

AN - SCOPUS:85037178318

VL - 65

JO - Physical Review A - Atomic, Molecular, and Optical Physics

JF - Physical Review A - Atomic, Molecular, and Optical Physics

SN - 1050-2947

IS - 3

ER -