Interfacial effects on vitrification of confined glass-forming liquids

Olga Trofymluk, Andrey A. Levchenko, Alexandra Navrotsky

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Mesoporous silica phases, with uniform pores of dimensions in the 2-30 nm range, offer a uniquely well-defined environment for the study of the effects of two-dimensional spatial confinement on the properties of glass-forming liquids. We report observations by differential scanning calorimetry of the vitrification of o -terphenyl (OTP), salol, and glycerol in hexagonal mesoporous silica (MCM-41 and SBA-15) in a wide range of pore sizes from 2.6 to 26.4 nm. In agreement with previous studies, where a controlled porous glass is used as a solid matrix, the glass transition temperature for o -terphenyl diminishes with decreasing pore size. In contrast to OTP, glycerol shows a gradual increase in glass transition temperature, while in salol a slight reduction of glass transition temperature is observed, followed by an increase, which results in glass transition temperature indistinguishable from that of the bulk for the smallest pores. These results are discussed in terms of liquid-surface interactions in an interfacial layer, monitored by Fourier-transformed infrared spectroscopy in the study. The hydrogen bonding with silica surface silanols dominates the glass transition trends observed in salol and glycerol.

Original languageEnglish (US)
Article number194509
JournalJournal of Chemical Physics
Volume123
Issue number19
DOIs
StatePublished - Nov 15 2005
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Interfacial effects on vitrification of confined glass-forming liquids'. Together they form a unique fingerprint.

Cite this