Integrating Novelty Detection Capabilities with MSL Mastcam Operations to Enhance Data Analysis

Paul Horton, Hannah R. Kerner, Samantha Jacob, Ernest Cisneros, Kiri L. Wagstaff, James Bell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

While innovations in scientific instrumentation have pushed the boundaries of Mars rover mission capabilities, the increase in data complexity has pressured Mars Science Laboratory (MSL) and future Mars rover operations staff to quickly analyze complex data sets to meet progressively shorter tactical and strategic planning timelines. MSLWEB is an internal data tracking tool used by operations staff to perform first pass analysis on MSL image sequences, a series of products taken by the Mast camera, Mastcam. Mastcam consists of a pair of 400-1000 nm wavelength cameras on MSL's Remote Sensing Mast that, among other functions, uses a filter wheel to produce multispectral images by creating a sequence of products at different wavelengths. Mastcam's multiband multispectral image sequences require more complex analysis compared to standard 3-band RGB images. Typically, these are analyzed by the inspection of false color images created to aid visualization, such as band ratios between different spectral indices that can highlight specific potential mineralogic differences among iron-bearing phases, and decorrelation stretches to enhance the color differences between multiple filters. Given the short time frame of tactical planning in which down-linked images might need to be analyzed (within 5-10 hours before the next uplink), there exists a need to triage analysis time to focus on the most important sequences and parts of a sequence. We address this need by creating products for MSLWEB that use novelty detection to help operations staff identify unusual data that might be diagnostic of new or atypical compositions or mineralogies detected within an imaging scene. This was achieved in two ways: 1) by creating products for each sequence to identify novel regions in the image, and 2) by assigning multispectral sequences a sortable novelty score. These new products provide colorized heat maps of inferred novelty that operations staff can use to rapidly review down-linked data and focus their efforts on analyzing potentially new kinds of diagnostic multispectral signatures. This approach has the potential to guide scientists to new discoveries by quickly drawing their attention to often subtle variations not detectable with simple color composites. The products developed in this work have shown promising benefits for integration into mission operations by potentially decreasing tactical operations planning time through guided triage.

Original languageEnglish (US)
Title of host publication2021 IEEE Aerospace Conference, AERO 2021
PublisherIEEE Computer Society
ISBN (Electronic)9781728174365
DOIs
StatePublished - Mar 6 2021
Event2021 IEEE Aerospace Conference, AERO 2021 - Big Sky, United States
Duration: Mar 6 2021Mar 13 2021

Publication series

NameIEEE Aerospace Conference Proceedings
Volume2021-March
ISSN (Print)1095-323X

Conference

Conference2021 IEEE Aerospace Conference, AERO 2021
Country/TerritoryUnited States
CityBig Sky
Period3/6/213/13/21

ASJC Scopus subject areas

  • Aerospace Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Integrating Novelty Detection Capabilities with MSL Mastcam Operations to Enhance Data Analysis'. Together they form a unique fingerprint.

Cite this