Integrability of two-loop dilatation operator in gauge theories

Andrei Belitsky, G. P. Korchemsky, D. Müller

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

We study the two-loop dilatation operator in the noncompact SL (2) sector of QCD and supersymmetric Yang-Mills theories with N = 1, 2, 4 supercharges. The analysis is performed for Wilson operators built from three quark/gaugino fields of the same helicity belonging to the fundamental/adjoint representation of the SU (3)/SU (Nc) gauge group and involving an arbitrary number of covariant derivatives projected onto the light-cone. To one-loop order, the dilatation operator inherits the conformal symmetry of the classical theory and is given in the multi-color limit by a local Hamiltonian of the Heisenberg magnet with the spin operators being generators of the collinear subgroup of full (super)conformal group. Starting from two loops, the dilatation operator depends on the representation of the gauge group and, in addition, receives corrections stemming from the violation of the conformal symmetry. We compute its eigenspectrum and demonstrate that to two-loop order integrability survives the conformal symmetry breaking in the aforementioned gauge theories, but it is violated in QCD by the contribution of nonplanar diagrams. In SYM theories with extended supersymmetry, the N-dependence of the two-loop dilatation operator can be factorized (modulo an additive normalization constant) into a multiplicative c-number. This property makes the eigenspectrum of the two-loop dilatation operator alike in all gauge theories including the maximally supersymmetric theory. Our analysis suggests that integrability is only tied to the planar limit and it is sensitive neither to conformal symmetry nor supersymmetry.

Original languageEnglish (US)
Pages (from-to)17-83
Number of pages67
JournalNuclear Physics B
Volume735
Issue number1-3
DOIs
StatePublished - Feb 13 2006

    Fingerprint

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this