TY - JOUR
T1 - Inhalation exposure to volatile organic compounds in the printing industry
AU - Alabdulhadi, Abdullah
AU - Ramadan, Ashraf
AU - Devey, Peter
AU - Boggess, May
AU - Guest, Maya
N1 - Funding Information:
The authors wish to thank all printeries managers and their workers for their valuable time, effort, and contribution to this study, without whose support this study would not have been possible. The research was generously funded by the Government of Kuwait.
PY - 2019/10/3
Y1 - 2019/10/3
N2 - This study reports on the occupational inhalation exposure to VOCs of workers in the Kuwaiti printing industry. Using the evacuated canister methodology, we targeted 72 VOCs in three printeries and compared the concentrations to previous reports and relevant occupational exposure levels (OELs). We found that recent efforts in the printing industry to reduce VOC usage had been successful, as concentrations of key hazardous VOCs were substantially lower than anticipated. On the other hand, nearly all target VOCs were found. Non-production areas were sampled along with the offset printing areas, another strength of this study, and revealed exposures to hazardous VOCs among administers and digital printer and CTP operators. Exposure to ototoxic VOCs amounted to 1–3% of the OEL, consisting mostly of ethylbenzene, which was likely in use in two of the study printeries. Exposure to carcinogenic or probably carcinogenic VOCs was 15–20% of the OEL at four locations across the three printeries, consisting mostly of vinyl chloride and benzyl chloride. Vinyl chloride VOC was partially sourced from outdoors, but was also likely used inside the study printeries. Interestingly, concentrations of vinyl chloride were similar in most sampling locations to that of CFC-114, a CFC banned by the Montreal Protocol and not commonly used as a refrigerant. This unexpected finding suggests further study is warranted to identify the use of these VOCs in printeries. Exposure to hazardous VOCs up to nearly 50% of the OEL, consisting largely of bromoform and vinyl chloride. Bromoform was found in all the study printeries, sourced partially from outdoor air. The higher concentrations found inside the study printeries likely resulted from the use of the desalinated water for washing. This finding raises of emissions from sources other than blanket washes, and inks, etc. adding to the total VOC load in printery indoor air. Implications: Results from this study indicate that efforts to reduce worker exposure to VOCs particularly dangerous to human health in recent years have been successful, but there is still much to be done to protect workers. Exposures to ototoxic and carcinogenic VOCs were identified, among both production and non-production workers. Unexpected findings included the apparent use in printing activities of the carcinogen vinyl chloride and CFC-114, banned under the Montreal Protocol. Observed lapses in safety procedures included failure to utilize ventilation systems and closing doors between work areas, indicating management and worker education should remain a priority.
AB - This study reports on the occupational inhalation exposure to VOCs of workers in the Kuwaiti printing industry. Using the evacuated canister methodology, we targeted 72 VOCs in three printeries and compared the concentrations to previous reports and relevant occupational exposure levels (OELs). We found that recent efforts in the printing industry to reduce VOC usage had been successful, as concentrations of key hazardous VOCs were substantially lower than anticipated. On the other hand, nearly all target VOCs were found. Non-production areas were sampled along with the offset printing areas, another strength of this study, and revealed exposures to hazardous VOCs among administers and digital printer and CTP operators. Exposure to ototoxic VOCs amounted to 1–3% of the OEL, consisting mostly of ethylbenzene, which was likely in use in two of the study printeries. Exposure to carcinogenic or probably carcinogenic VOCs was 15–20% of the OEL at four locations across the three printeries, consisting mostly of vinyl chloride and benzyl chloride. Vinyl chloride VOC was partially sourced from outdoors, but was also likely used inside the study printeries. Interestingly, concentrations of vinyl chloride were similar in most sampling locations to that of CFC-114, a CFC banned by the Montreal Protocol and not commonly used as a refrigerant. This unexpected finding suggests further study is warranted to identify the use of these VOCs in printeries. Exposure to hazardous VOCs up to nearly 50% of the OEL, consisting largely of bromoform and vinyl chloride. Bromoform was found in all the study printeries, sourced partially from outdoor air. The higher concentrations found inside the study printeries likely resulted from the use of the desalinated water for washing. This finding raises of emissions from sources other than blanket washes, and inks, etc. adding to the total VOC load in printery indoor air. Implications: Results from this study indicate that efforts to reduce worker exposure to VOCs particularly dangerous to human health in recent years have been successful, but there is still much to be done to protect workers. Exposures to ototoxic and carcinogenic VOCs were identified, among both production and non-production workers. Unexpected findings included the apparent use in printing activities of the carcinogen vinyl chloride and CFC-114, banned under the Montreal Protocol. Observed lapses in safety procedures included failure to utilize ventilation systems and closing doors between work areas, indicating management and worker education should remain a priority.
UR - http://www.scopus.com/inward/record.url?scp=85072716591&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072716591&partnerID=8YFLogxK
U2 - 10.1080/10962247.2019.1629355
DO - 10.1080/10962247.2019.1629355
M3 - Article
C2 - 31184550
AN - SCOPUS:85072716591
VL - 69
SP - 1142
EP - 1169
JO - Journal of the Air and Waste Management Association
JF - Journal of the Air and Waste Management Association
SN - 1073-161X
IS - 10
ER -