Infrastructure as a wicked complex process

Research output: Contribution to journalReview article

Abstract

Changing complexity in the increasingly integrated human, natural, and built systems within which our infrastructures are designed and operated make it necessary to examine how the role of engineering requires new competencies for satisficing. Several long-term trends appear to be shifting our infrastructures further away from the complicated domain where optimization and efficiency were the core approaches, to the domain of complexity, where rapidly changing environments and fragmentation of goals require fundamentally new approaches. While complexity in infrastructure has always existed in some form, making infrastructures agile and flexible for the Anthropocene will require us to acknowledge and work with the fact that infrastructure change now appears to be a wicked and complex process. Wicked complexity is the result of three competing forces that are inimical to rapid and sustained change of infrastructures in a future marked by acceleration and uncertainty: wicked problems, technical complexity including lock-in, and social complexity. The combination of these factors raises serious questions about whether rapidly changing demands, technologies, and perturbations (such as climate change, or cyber attacks) will affect our infrastructure’s capacity to provide services. What infrastructure managers need to do today is very different than in the past. Increased presence and polarization of viewpoints is becoming more common, where solutions are dictated not by technical performance measures but instead by “acceptable enough” to all parties. Adaptive management practices and associated competencies that have proven successful in managing complex socio-ecological systems may provide some guidance for how to manage infrastructure change. These competencies are i) promoting a shared understanding of what infrastructures can do, ii) managing infrastructures as systems with changing demands, iii) emphasizing experimentation over conventional approaches, and, iv) restructuring education and training for a complexity mindset that emphasizes what can be over what is, and relies on satisficing, not optimization.

Original languageEnglish (US)
Article number21
JournalElementa
Volume7
Issue number1
DOIs
StatePublished - Jan 1 2019

Fingerprint

infrastructure
Climate change
Managers
Education
Polarization
education and training
adaptive management
management practice
fragmentation
Uncertainty
polarization
perturbation
engineering
climate change

Keywords

  • Anthropocene
  • Infrastructure
  • Wicked complexity

ASJC Scopus subject areas

  • Oceanography
  • Environmental Engineering
  • Ecology
  • Geotechnical Engineering and Engineering Geology
  • Geology
  • Atmospheric Science

Cite this

Infrastructure as a wicked complex process. / Chester, Mikhail; Allenby, Braden.

In: Elementa, Vol. 7, No. 1, 21, 01.01.2019.

Research output: Contribution to journalReview article

@article{53a48ce5e1384404b997ee7af4f6c159,
title = "Infrastructure as a wicked complex process",
abstract = "Changing complexity in the increasingly integrated human, natural, and built systems within which our infrastructures are designed and operated make it necessary to examine how the role of engineering requires new competencies for satisficing. Several long-term trends appear to be shifting our infrastructures further away from the complicated domain where optimization and efficiency were the core approaches, to the domain of complexity, where rapidly changing environments and fragmentation of goals require fundamentally new approaches. While complexity in infrastructure has always existed in some form, making infrastructures agile and flexible for the Anthropocene will require us to acknowledge and work with the fact that infrastructure change now appears to be a wicked and complex process. Wicked complexity is the result of three competing forces that are inimical to rapid and sustained change of infrastructures in a future marked by acceleration and uncertainty: wicked problems, technical complexity including lock-in, and social complexity. The combination of these factors raises serious questions about whether rapidly changing demands, technologies, and perturbations (such as climate change, or cyber attacks) will affect our infrastructure’s capacity to provide services. What infrastructure managers need to do today is very different than in the past. Increased presence and polarization of viewpoints is becoming more common, where solutions are dictated not by technical performance measures but instead by “acceptable enough” to all parties. Adaptive management practices and associated competencies that have proven successful in managing complex socio-ecological systems may provide some guidance for how to manage infrastructure change. These competencies are i) promoting a shared understanding of what infrastructures can do, ii) managing infrastructures as systems with changing demands, iii) emphasizing experimentation over conventional approaches, and, iv) restructuring education and training for a complexity mindset that emphasizes what can be over what is, and relies on satisficing, not optimization.",
keywords = "Anthropocene, Infrastructure, Wicked complexity",
author = "Mikhail Chester and Braden Allenby",
year = "2019",
month = "1",
day = "1",
doi = "10.1525/elementa.360",
language = "English (US)",
volume = "7",
journal = "Elementa",
issn = "2325-1026",
publisher = "BioOne",
number = "1",

}

TY - JOUR

T1 - Infrastructure as a wicked complex process

AU - Chester, Mikhail

AU - Allenby, Braden

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Changing complexity in the increasingly integrated human, natural, and built systems within which our infrastructures are designed and operated make it necessary to examine how the role of engineering requires new competencies for satisficing. Several long-term trends appear to be shifting our infrastructures further away from the complicated domain where optimization and efficiency were the core approaches, to the domain of complexity, where rapidly changing environments and fragmentation of goals require fundamentally new approaches. While complexity in infrastructure has always existed in some form, making infrastructures agile and flexible for the Anthropocene will require us to acknowledge and work with the fact that infrastructure change now appears to be a wicked and complex process. Wicked complexity is the result of three competing forces that are inimical to rapid and sustained change of infrastructures in a future marked by acceleration and uncertainty: wicked problems, technical complexity including lock-in, and social complexity. The combination of these factors raises serious questions about whether rapidly changing demands, technologies, and perturbations (such as climate change, or cyber attacks) will affect our infrastructure’s capacity to provide services. What infrastructure managers need to do today is very different than in the past. Increased presence and polarization of viewpoints is becoming more common, where solutions are dictated not by technical performance measures but instead by “acceptable enough” to all parties. Adaptive management practices and associated competencies that have proven successful in managing complex socio-ecological systems may provide some guidance for how to manage infrastructure change. These competencies are i) promoting a shared understanding of what infrastructures can do, ii) managing infrastructures as systems with changing demands, iii) emphasizing experimentation over conventional approaches, and, iv) restructuring education and training for a complexity mindset that emphasizes what can be over what is, and relies on satisficing, not optimization.

AB - Changing complexity in the increasingly integrated human, natural, and built systems within which our infrastructures are designed and operated make it necessary to examine how the role of engineering requires new competencies for satisficing. Several long-term trends appear to be shifting our infrastructures further away from the complicated domain where optimization and efficiency were the core approaches, to the domain of complexity, where rapidly changing environments and fragmentation of goals require fundamentally new approaches. While complexity in infrastructure has always existed in some form, making infrastructures agile and flexible for the Anthropocene will require us to acknowledge and work with the fact that infrastructure change now appears to be a wicked and complex process. Wicked complexity is the result of three competing forces that are inimical to rapid and sustained change of infrastructures in a future marked by acceleration and uncertainty: wicked problems, technical complexity including lock-in, and social complexity. The combination of these factors raises serious questions about whether rapidly changing demands, technologies, and perturbations (such as climate change, or cyber attacks) will affect our infrastructure’s capacity to provide services. What infrastructure managers need to do today is very different than in the past. Increased presence and polarization of viewpoints is becoming more common, where solutions are dictated not by technical performance measures but instead by “acceptable enough” to all parties. Adaptive management practices and associated competencies that have proven successful in managing complex socio-ecological systems may provide some guidance for how to manage infrastructure change. These competencies are i) promoting a shared understanding of what infrastructures can do, ii) managing infrastructures as systems with changing demands, iii) emphasizing experimentation over conventional approaches, and, iv) restructuring education and training for a complexity mindset that emphasizes what can be over what is, and relies on satisficing, not optimization.

KW - Anthropocene

KW - Infrastructure

KW - Wicked complexity

UR - http://www.scopus.com/inward/record.url?scp=85070558492&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070558492&partnerID=8YFLogxK

U2 - 10.1525/elementa.360

DO - 10.1525/elementa.360

M3 - Review article

AN - SCOPUS:85070558492

VL - 7

JO - Elementa

JF - Elementa

SN - 2325-1026

IS - 1

M1 - 21

ER -