Influence of Transcranial Electrical Stimulation (TES) waveforms on neural excitability of a realistic axon: A simulation study

Sulagna Sahu, Munish Chauhan, Saurav Z.K. Sajib, Rosalind J. Sadleir

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Neuromodulation caused by transcranial electrical stimulation (TES) has been used successfully to treat various neuro-degenerative diseases. Simulation models provide an essential tool to study brain and nerve stimulation. Simulation models of TES provide an opportunity to research personalization of therapy without extensive animal and human testing. A computer model of a realistic sensory axon was built by finding actual geometry of the trigeminal nerve through tractography. A finite element model of the head was solved to obtain electric potential distribution caused by TES. Different waveforms were defined to test transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) with varying amplitude and frequency. Neural activity patterns were observed. The strength-duration curve was plotted to verify the model.

Original languageEnglish (US)
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6725-6727
Number of pages3
ISBN (Electronic)9781728111797
DOIs
StatePublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: Nov 1 2021Nov 5 2021

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period11/1/2111/5/21

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Influence of Transcranial Electrical Stimulation (TES) waveforms on neural excitability of a realistic axon: A simulation study'. Together they form a unique fingerprint.

Cite this