Inferring rates and length-distributions of indels using approximate Bayesian computation

Eli Levy Karin, Dafna Shkedy, Haim Ashkenazy, Reed Cartwright, Tal Pupko

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Themost common evolutionary events at themolecular level are single-base substitutions, aswell as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics, probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extracting summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second, SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters as well as point estimates.Westudy the performance of our methodology and showthat it provides accurate estimates of indel parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the inference of positive selection. A C++program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.

Original languageEnglish (US)
Pages (from-to)1280-1294
Number of pages15
JournalGenome biology and evolution
Volume9
Issue number5
DOIs
StatePublished - 2017

Keywords

  • Alignments
  • Approximate Bayesian computation
  • Indels
  • Simulations

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics

Fingerprint Dive into the research topics of 'Inferring rates and length-distributions of indels using approximate Bayesian computation'. Together they form a unique fingerprint.

  • Cite this