### Abstract

Themost common evolutionary events at themolecular level are single-base substitutions, aswell as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics, probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extracting summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second, SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters as well as point estimates.Westudy the performance of our methodology and showthat it provides accurate estimates of indel parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the inference of positive selection. A C++program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.

Original language | English (US) |
---|---|

Pages (from-to) | 1280-1294 |

Number of pages | 15 |

Journal | Genome Biology and Evolution |

Volume | 9 |

Issue number | 5 |

DOIs | |

State | Published - 2017 |

### Fingerprint

### Keywords

- Alignments
- Approximate Bayesian computation
- Indels
- Simulations

### ASJC Scopus subject areas

- Medicine(all)
- Ecology, Evolution, Behavior and Systematics
- Genetics

### Cite this

*Genome Biology and Evolution*,

*9*(5), 1280-1294. https://doi.org/10.1093/gbe/evx084

**Inferring rates and length-distributions of indels using approximate Bayesian computation.** / Karin, Eli Levy; Shkedy, Dafna; Ashkenazy, Haim; Cartwright, Reed; Pupko, Tal.

Research output: Contribution to journal › Article

*Genome Biology and Evolution*, vol. 9, no. 5, pp. 1280-1294. https://doi.org/10.1093/gbe/evx084

}

TY - JOUR

T1 - Inferring rates and length-distributions of indels using approximate Bayesian computation

AU - Karin, Eli Levy

AU - Shkedy, Dafna

AU - Ashkenazy, Haim

AU - Cartwright, Reed

AU - Pupko, Tal

PY - 2017

Y1 - 2017

N2 - Themost common evolutionary events at themolecular level are single-base substitutions, aswell as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics, probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extracting summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second, SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters as well as point estimates.Westudy the performance of our methodology and showthat it provides accurate estimates of indel parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the inference of positive selection. A C++program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.

AB - Themost common evolutionary events at themolecular level are single-base substitutions, aswell as insertions and deletions (indels) of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics, probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extracting summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second, SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters as well as point estimates.Westudy the performance of our methodology and showthat it provides accurate estimates of indel parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the inference of positive selection. A C++program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.

KW - Alignments

KW - Approximate Bayesian computation

KW - Indels

KW - Simulations

UR - http://www.scopus.com/inward/record.url?scp=85026671229&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85026671229&partnerID=8YFLogxK

U2 - 10.1093/gbe/evx084

DO - 10.1093/gbe/evx084

M3 - Article

C2 - 28453624

AN - SCOPUS:85026671229

VL - 9

SP - 1280

EP - 1294

JO - Genome Biology and Evolution

JF - Genome Biology and Evolution

SN - 1759-6653

IS - 5

ER -