Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams

Karol Nass, Lutz Foucar, Thomas R.M. Barends, Elisabeth Hartmann, Sabine Botha, Robert L. Shoeman, R. Bruce Doak, Roberto Alonso-Mori, Andrew Aquila, Saša Bajt, Anton Barty, Richard Bean, Kenneth R. Beyerlein, Maike Bublitz, Nikolaj Drachmann, Jonas Gregersen, H. Olof Jönsson, Wolfgang Kabsch, Stephan Kassemeyer, Jason E. KoglinMichael Krumrey, Daniel Mattle, Marc Messerschmidt, Poul Nissen, Linda Reinhard, Oleg Sitsel, Dimosthenis Sokaras, Garth J. Williams, Stefan Hau-Riege, Nicusor Timneanu, Carl Caleman, Henry N. Chapman, Sébastien Boutet, Ilme Schlichting

Research output: Contribution to journalConference article

84 Scopus citations

Abstract

Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.

Original languageEnglish (US)
Pages (from-to)225-238
Number of pages14
JournalJournal of synchrotron radiation
Volume22
Issue number2
DOIs
StatePublished - Mar 1 2015
Externally publishedYes
Event8th International Workshop on X-ray Radiation Damage to Biological Crystalline Samples - Hamburg, Germany
Duration: Apr 10 2014Apr 12 2014

Keywords

  • SFX
  • free-electron laser
  • metalloprotein Includes papers presented at the 8th International Workshop on X-ray Radiation Damage to Biological Crystalline Samples
  • protein crystallography
  • radiation damage
  • serial femtosecond crystallography

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Instrumentation

Fingerprint Dive into the research topics of 'Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams'. Together they form a unique fingerprint.

  • Cite this

    Nass, K., Foucar, L., Barends, T. R. M., Hartmann, E., Botha, S., Shoeman, R. L., Doak, R. B., Alonso-Mori, R., Aquila, A., Bajt, S., Barty, A., Bean, R., Beyerlein, K. R., Bublitz, M., Drachmann, N., Gregersen, J., Jönsson, H. O., Kabsch, W., Kassemeyer, S., ... Schlichting, I. (2015). Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. Journal of synchrotron radiation, 22(2), 225-238. https://doi.org/10.1107/S1600577515002349