In-Memory Computing with Spintronic Devices

Deliang Fan, Shaahin Angizi, Zhezhi He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

In-Memory computing has drawn many attentions as a promising solution to reduce massive power hungry data traffic between computing and memory units, leading to significant improvement of entire system performance and energy efficiency. Emerging spintronic device based non-volatile memory is becoming a next-generation universal memory candidate due to its non-volatility, zero leakage power in un-accessed bit-cell, high integration density, excellent endurance and compatibility with CMOS fabrication technology. In this paper, we present that different spintronic devices based memory, including spin-orbit torque magnetic random access memory (SOT-MRAM), domain wall motion memory, magnetic racetrack memory, could be leveraged to implement logic functions within memory without add-on logic circuits. As a case study, we employ Advanced Encryption Standard (AES) algorithm to elucidate the efficiency of such in-memory computing based on spintronic memory.

Original languageEnglish (US)
Title of host publicationProceedings - 2017 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2017
EditorsRicardo Reis, Mircea Stan, Michael Huebner, Nikolaos Voros
PublisherIEEE Computer Society
Pages683-688
Number of pages6
ISBN (Electronic)9781509067626
DOIs
StatePublished - Jul 20 2017
Externally publishedYes
Event2017 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2017 - Bochum, North Rhine-Westfalia, Germany
Duration: Jul 3 2017Jul 5 2017

Publication series

NameProceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI
Volume2017-July
ISSN (Print)2159-3469
ISSN (Electronic)2159-3477

Other

Other2017 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2017
CountryGermany
CityBochum, North Rhine-Westfalia
Period7/3/177/5/17

Keywords

  • Domain Wall Memory
  • In-Memory Computing
  • In-Memory Data Encryption
  • Racetrack Memory
  • SOT-MRAM

ASJC Scopus subject areas

  • Hardware and Architecture
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'In-Memory Computing with Spintronic Devices'. Together they form a unique fingerprint.

Cite this