Abstract

The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional singlegain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pickand-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands.

Original languageEnglish (US)
Article number71
JournalFrontiers in Neurorobotics
Volume11
Issue numberJAN
DOIs
StatePublished - Jan 10 2018

Fingerprint

Prosthetics
Controllers
Force control
Sensory feedback
Gain control
Degrees of freedom (mechanics)
End effectors
Merging
Robotics
Innovation
Switches
Stiffness
Feedback

Keywords

  • Force control
  • Grasping
  • Hand function assessment
  • Haptic feedback
  • Neuroprosthetics
  • Object manipulation

ASJC Scopus subject areas

  • Biomedical Engineering
  • Artificial Intelligence

Cite this

@article{06fc1984fef34a2fa2a31303ad18f0be,
title = "Improving fine control of grasping force during hand-object interactions for a soft synergy-inspired myoelectric prosthetic hand",
abstract = "The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional singlegain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pickand-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands.",
keywords = "Force control, Grasping, Hand function assessment, Haptic feedback, Neuroprosthetics, Object manipulation",
author = "Qiushi Fu and Marco Santello",
year = "2018",
month = "1",
day = "10",
doi = "10.3389/fnbot.2017.00071",
language = "English (US)",
volume = "11",
journal = "Frontiers in Neurorobotics",
issn = "1662-5218",
publisher = "Frontiers Research Foundation",
number = "JAN",

}

TY - JOUR

T1 - Improving fine control of grasping force during hand-object interactions for a soft synergy-inspired myoelectric prosthetic hand

AU - Fu, Qiushi

AU - Santello, Marco

PY - 2018/1/10

Y1 - 2018/1/10

N2 - The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional singlegain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pickand-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands.

AB - The concept of postural synergies of the human hand has been shown to potentially reduce complexity in the neuromuscular control of grasping. By merging this concept with soft robotics approaches, a multi degrees of freedom soft-synergy prosthetic hand [SoftHand-Pro (SHP)] was created. The mechanical innovation of the SHP enables adaptive and robust functional grasps with simple and intuitive myoelectric control from only two surface electromyogram (sEMG) channels. However, the current myoelectric controller has very limited capability for fine control of grasp forces. We addressed this challenge by designing a hybrid-gain myoelectric controller that switches control gains based on the sensorimotor state of the SHP. This controller was tested against a conventional singlegain (SG) controller, as well as against native hand in able-bodied subjects. We used the following tasks to evaluate the performance of grasp force control: (1) pick and place objects with different size, weight, and fragility levels using power or precision grasp and (2) squeezing objects with different stiffness. Sensory feedback of the grasp forces was provided to the user through a non-invasive, mechanotactile haptic feedback device mounted on the upper arm. We demonstrated that the novel hybrid controller enabled superior task completion speed and fine force control over SG controller in object pickand-place tasks. We also found that the performance of the hybrid controller qualitatively agrees with the performance of native human hands.

KW - Force control

KW - Grasping

KW - Hand function assessment

KW - Haptic feedback

KW - Neuroprosthetics

KW - Object manipulation

UR - http://www.scopus.com/inward/record.url?scp=85041433864&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041433864&partnerID=8YFLogxK

U2 - 10.3389/fnbot.2017.00071

DO - 10.3389/fnbot.2017.00071

M3 - Article

AN - SCOPUS:85041433864

VL - 11

JO - Frontiers in Neurorobotics

JF - Frontiers in Neurorobotics

SN - 1662-5218

IS - JAN

M1 - 71

ER -