Abstract

We developed a method to engineer the surface topography of Nb underlayers using surface oxidation followed by low energy Ar ion milling to improve the properties of subsequently deposited magnetic Ni<formula><tex>$_{80}$</tex></formula>Fe<formula><tex>$_{20}$</tex></formula> (Permalloy) thin films. The reduced coercivity H<formula><tex>$_{c}$</tex></formula>, increased remanent squareness, and improved magnetic anisotropy in Ni<formula><tex>$_{80}$</tex></formula>Fe<formula><tex>$_{20}$</tex></formula> thin films deposited on oxidized and subsequently ion milled Nb was found to be primarily due to the reduced roughness of the Nb underlayer, especially at high spatial frequency (&#x003E; 25 &#x03BC;m<formula><tex>$^{-1}$</tex></formula>). The typical results that we obtained for Ni<formula><tex>$_{80}$</tex></formula>Fe<formula><tex>$_{20}$</tex></formula> films 2.4 nm thick deposited on Nb 100 nm thick was an easy axis coercivity H<formula><tex>$_{ce}$</tex></formula> = 3.7 Oe (6 Oe without smoothing), a hard-axis H<formula><tex>$_{ch}$</tex></formula> = 1.5 Oe (5.5 Oe without smoothing), an easy axis remanent squareness Sq<formula><tex>$_{e}$</tex></formula> = M<formula><tex>$_{r}$</tex></formula>/M<formula><tex>$_{s}$</tex></formula> = 0.92, a hard-axis remanent squareness Sq<formula><tex>$_{h}$</tex></formula>= 0.25, and a uniaxial anisotropy H<formula><tex>$_{k}$</tex></formula> of = 6.0 Oe, all measured at T = 10 K. This ion-smoothing technique could potentially be used to improve the properties of magnetic layers in superconducting memory and other magnetoelectronic devices which utilize a thick underlayer that serves as an electrical contact.

Original languageEnglish (US)
JournalIEEE Magnetics Letters
DOIs
StateAccepted/In press - Nov 18 2017

Keywords

  • Magnetic films
  • Magnetic measurements
  • Soft Magnetic Materials

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials

Fingerprint Dive into the research topics of 'Improvement in the magnetic properties of NiFe thin films on thick Nb electrodes using oxidation and low energy Ar ion milling'. Together they form a unique fingerprint.

Cite this