Improved Convergence Rates for Distributed Resource Allocation

Angelia Nedich, Alex Olshevsky, Wei Shi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

38 Scopus citations

Abstract

In this paper, we develop a class of decentralized algorithms for solving a convex resource allocation optimization problem over a connected network. By observing a connection between the resource allocation and the consensus optimization, we propose a novel class of algorithms for solving the resource allocation problem with improved convergence guarantees. Specifically, we introduce an algorithm for solving the resource allocation problem with an o(1/k) convergence rate when the agents' objective functions are generally convex and per agent local constraints are allowed; we then introduce a gradient-based algorithm for the case when per agent local constraints are absent and show that such scheme achieves geometric convergence with an improved scalability. We also provide a projection-gradient-based algorithm which can handle smooth objective and simple constraints more efficiently.

Original languageEnglish (US)
Title of host publication2018 IEEE Conference on Decision and Control, CDC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages172-177
Number of pages6
ISBN (Electronic)9781538613955
DOIs
StatePublished - Jul 2 2018
Event57th IEEE Conference on Decision and Control, CDC 2018 - Miami, United States
Duration: Dec 17 2018Dec 19 2018

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2018-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference57th IEEE Conference on Decision and Control, CDC 2018
Country/TerritoryUnited States
CityMiami
Period12/17/1812/19/18

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Improved Convergence Rates for Distributed Resource Allocation'. Together they form a unique fingerprint.

Cite this