Implications of a primordial magnetic field for magnetic monopoles, axions, and Dirac neutrinos

Andrew J. Long, Tanmay Vachaspati

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, n(t0)<1×10-20 cm-3, which is a "primordial" analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the gaγφE·B/4π interaction. Including the effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic microwave background photons into axions lead to gaγ 10-9 GeV-1 for the suggested PMF strength 10-14 G and coherence length 10 Mpc. Finally, we apply constraints on the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the presence of a PMF, and we find μν 10-16 μB.

Original languageEnglish (US)
Article number103522
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume91
Issue number10
DOIs
StatePublished - May 20 2015

Fingerprint

magnetic monopoles
neutrinos
magnetic fields
interstellar magnetic fields
nuclear fusion
magnetic dipoles
monopoles
field strength
astrophysics
dipole moments
magnetic moments
interactions
analogs
microwaves
physics
photons

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

@article{0852bc26c73149fb864f4974218c15f2,
title = "Implications of a primordial magnetic field for magnetic monopoles, axions, and Dirac neutrinos",
abstract = "We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, n(t0)<1×10-20 cm-3, which is a {"}primordial{"} analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the gaγφE·B/4π interaction. Including the effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic microwave background photons into axions lead to gaγ 10-9 GeV-1 for the suggested PMF strength 10-14 G and coherence length 10 Mpc. Finally, we apply constraints on the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the presence of a PMF, and we find μν 10-16 μB.",
author = "Long, {Andrew J.} and Tanmay Vachaspati",
year = "2015",
month = "5",
day = "20",
doi = "10.1103/PhysRevD.91.103522",
language = "English (US)",
volume = "91",
journal = "Physical review D: Particles and fields",
issn = "1550-7998",
publisher = "American Institute of Physics Publising LLC",
number = "10",

}

TY - JOUR

T1 - Implications of a primordial magnetic field for magnetic monopoles, axions, and Dirac neutrinos

AU - Long, Andrew J.

AU - Vachaspati, Tanmay

PY - 2015/5/20

Y1 - 2015/5/20

N2 - We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, n(t0)<1×10-20 cm-3, which is a "primordial" analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the gaγφE·B/4π interaction. Including the effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic microwave background photons into axions lead to gaγ 10-9 GeV-1 for the suggested PMF strength 10-14 G and coherence length 10 Mpc. Finally, we apply constraints on the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the presence of a PMF, and we find μν 10-16 μB.

AB - We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, n(t0)<1×10-20 cm-3, which is a "primordial" analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the gaγφE·B/4π interaction. Including the effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic microwave background photons into axions lead to gaγ 10-9 GeV-1 for the suggested PMF strength 10-14 G and coherence length 10 Mpc. Finally, we apply constraints on the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the presence of a PMF, and we find μν 10-16 μB.

UR - http://www.scopus.com/inward/record.url?scp=84930621893&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84930621893&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.91.103522

DO - 10.1103/PhysRevD.91.103522

M3 - Article

VL - 91

JO - Physical review D: Particles and fields

JF - Physical review D: Particles and fields

SN - 1550-7998

IS - 10

M1 - 103522

ER -