Abstract
Assessing the impacts of land use and land cover change (LUCC) on regional climate is essential for understanding land-atmosphere interactions and for designing climate adaptation and mitigation strategies. Using the weather research and forecasting (WRF) model, we examined how different land use and land cover patterns affect regional climate in the agro-pastoral transitional zone of North China, whose environmental and socioeconomic conditions are sensitive to climate change. We parameterized WRF using land use and land cover maps corresponding to 2001 and 2010 conditions, which differ in the representation of four land surface biophysical parameters: vegetation fraction, leaf area index (LAI), albedo, and emissivity. From 2001 to 2010, vegetation fraction and LAI increased in summer, emissivity increased and albedo decreased in winter. Our WRF simulations show that differences in land use and land cover patterns led to widespread reduction in summer temperature with local cooling on the order of 1 °C, and extensive increase in winter temperature with local warming exceeding 0.8 °C. By contrast, simulations using the default landscape representation, provided by WRF itself, show only minor and random changes in temperature. Model evaluation further reveals that our simulations with appropriate land surface properties improve the performance of the WRF model. Our findings demonstrate that LUCC in Northern China has altered the regional climate over the past decade. The magnitude and spatial patterns of temperature changes quantified by our simulations provide useful information for understanding the impacts of LUCC on climate and for developing mitigation and adaptation strategies in arid and semiarid regions.
Original language | English (US) |
---|---|
Article number | 124025 |
Journal | Environmental Research Letters |
Volume | 10 |
Issue number | 12 |
DOIs | |
State | Published - Dec 29 2015 |
Keywords
- agro-pastoral transitional zone
- climate change
- land surface biophysical parameter
- land use and land cover change
- landscape pattern
- mitigation and adaptation strategy
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Environmental Science(all)
- Public Health, Environmental and Occupational Health