Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests

Ben Somers, Gregory P. Asner

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

The unique ecosystems of the Hawaiian Islands are progressively being threatened following the introduction of exotic species. Operational implementation of remote sensing for the detection, mapping and monitoring of these biological invasions is currently hampered by a lack of knowledge on the spectral separability between native and invasive species. We used spaceborne imaging spectroscopy to analyze the seasonal dynamics of the canopy hyperspectral reflectance properties of four tree species: (i) Metrosideros polymorpha, a keystone native Hawaiian species; (ii) Acacia koa, a native Hawaiian nitrogen fixer; (iii) the highly invasive Psidium cattleianum; and (iv) Morella faya, a highly invasive nitrogen fixer. The species specific separability of the reflectance and derivative-reflectance signatures extracted from an Earth Observing-1 Hyperion time series, composed of 22 cloud-free images spanning a period of four years and was quantitatively evaluated using the Separability Index (SI). The analysis revealed that the Hawaiian native trees were universally unique from the invasive trees in their near-infrared-1 (700-1,250 nm) reflectance (0.4 > SI > 1.4). Due to its higher leaf area index, invasive trees generally had a higher near-infrared reflectance. To a lesser extent, it could also be demonstrated that nitrogen-fixing trees were spectrally unique from non-fixing trees. The higher leaf nitrogen content of nitrogen-fixing trees was expressed through slightly increased separabilities in visible and shortwave-infrared reflectance wavebands (SI = 0.4). We also found phenology to be key to spectral separability analysis. As such, it was shown that the spectral separability in the near-infrared-1 reflectance between the native and invasive species groups was more expressed in summer (SI > 0.7) than in winter (SI < 0.7). The lowest separability was observed for March-July (SI < 0.3). This could be explained by the invasives taking advantage of the warmer summer period to expand their canopy. There was, however, no specific time window or a single spectral region that always defined the separability of all species groups, and thus intensive monitoring of plant phenology as well as the use of the full-range (400-2,500 nm) spectrum was highly advantageous in differentiating each species. These results set a basis for an operational invasive species monitoring program in Hawai'i using spaceborne imaging spectroscopy.

Original languageEnglish (US)
Pages (from-to)2510-2529
Number of pages20
JournalRemote Sensing
Volume4
Issue number9
DOIs
StatePublished - Sep 1 2012
Externally publishedYes

Fingerprint

time series analysis
invasive species
rainforest
native species
reflectance
nitrogen
near infrared
phenology
monitoring
spectroscopy
Hyperion
canopy reflectance
biological invasion
summer
leaf area index
spectral analysis
index
canopy
time series
remote sensing

Keywords

  • Earth observing-1
  • Hyperion
  • Morella faya
  • Phenology
  • Psidium cattleianum
  • Spectral separability index
  • Time series analysis

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Cite this

Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests. / Somers, Ben; Asner, Gregory P.

In: Remote Sensing, Vol. 4, No. 9, 01.09.2012, p. 2510-2529.

Research output: Contribution to journalArticle

@article{190b7b2f2c2547b482be19bc78c32022,
title = "Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests",
abstract = "The unique ecosystems of the Hawaiian Islands are progressively being threatened following the introduction of exotic species. Operational implementation of remote sensing for the detection, mapping and monitoring of these biological invasions is currently hampered by a lack of knowledge on the spectral separability between native and invasive species. We used spaceborne imaging spectroscopy to analyze the seasonal dynamics of the canopy hyperspectral reflectance properties of four tree species: (i) Metrosideros polymorpha, a keystone native Hawaiian species; (ii) Acacia koa, a native Hawaiian nitrogen fixer; (iii) the highly invasive Psidium cattleianum; and (iv) Morella faya, a highly invasive nitrogen fixer. The species specific separability of the reflectance and derivative-reflectance signatures extracted from an Earth Observing-1 Hyperion time series, composed of 22 cloud-free images spanning a period of four years and was quantitatively evaluated using the Separability Index (SI). The analysis revealed that the Hawaiian native trees were universally unique from the invasive trees in their near-infrared-1 (700-1,250 nm) reflectance (0.4 > SI > 1.4). Due to its higher leaf area index, invasive trees generally had a higher near-infrared reflectance. To a lesser extent, it could also be demonstrated that nitrogen-fixing trees were spectrally unique from non-fixing trees. The higher leaf nitrogen content of nitrogen-fixing trees was expressed through slightly increased separabilities in visible and shortwave-infrared reflectance wavebands (SI = 0.4). We also found phenology to be key to spectral separability analysis. As such, it was shown that the spectral separability in the near-infrared-1 reflectance between the native and invasive species groups was more expressed in summer (SI > 0.7) than in winter (SI < 0.7). The lowest separability was observed for March-July (SI < 0.3). This could be explained by the invasives taking advantage of the warmer summer period to expand their canopy. There was, however, no specific time window or a single spectral region that always defined the separability of all species groups, and thus intensive monitoring of plant phenology as well as the use of the full-range (400-2,500 nm) spectrum was highly advantageous in differentiating each species. These results set a basis for an operational invasive species monitoring program in Hawai'i using spaceborne imaging spectroscopy.",
keywords = "Earth observing-1, Hyperion, Morella faya, Phenology, Psidium cattleianum, Spectral separability index, Time series analysis",
author = "Ben Somers and Asner, {Gregory P.}",
year = "2012",
month = "9",
day = "1",
doi = "10.3390/rs4092510",
language = "English (US)",
volume = "4",
pages = "2510--2529",
journal = "Remote Sensing",
issn = "2072-4292",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "9",

}

TY - JOUR

T1 - Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests

AU - Somers, Ben

AU - Asner, Gregory P.

PY - 2012/9/1

Y1 - 2012/9/1

N2 - The unique ecosystems of the Hawaiian Islands are progressively being threatened following the introduction of exotic species. Operational implementation of remote sensing for the detection, mapping and monitoring of these biological invasions is currently hampered by a lack of knowledge on the spectral separability between native and invasive species. We used spaceborne imaging spectroscopy to analyze the seasonal dynamics of the canopy hyperspectral reflectance properties of four tree species: (i) Metrosideros polymorpha, a keystone native Hawaiian species; (ii) Acacia koa, a native Hawaiian nitrogen fixer; (iii) the highly invasive Psidium cattleianum; and (iv) Morella faya, a highly invasive nitrogen fixer. The species specific separability of the reflectance and derivative-reflectance signatures extracted from an Earth Observing-1 Hyperion time series, composed of 22 cloud-free images spanning a period of four years and was quantitatively evaluated using the Separability Index (SI). The analysis revealed that the Hawaiian native trees were universally unique from the invasive trees in their near-infrared-1 (700-1,250 nm) reflectance (0.4 > SI > 1.4). Due to its higher leaf area index, invasive trees generally had a higher near-infrared reflectance. To a lesser extent, it could also be demonstrated that nitrogen-fixing trees were spectrally unique from non-fixing trees. The higher leaf nitrogen content of nitrogen-fixing trees was expressed through slightly increased separabilities in visible and shortwave-infrared reflectance wavebands (SI = 0.4). We also found phenology to be key to spectral separability analysis. As such, it was shown that the spectral separability in the near-infrared-1 reflectance between the native and invasive species groups was more expressed in summer (SI > 0.7) than in winter (SI < 0.7). The lowest separability was observed for March-July (SI < 0.3). This could be explained by the invasives taking advantage of the warmer summer period to expand their canopy. There was, however, no specific time window or a single spectral region that always defined the separability of all species groups, and thus intensive monitoring of plant phenology as well as the use of the full-range (400-2,500 nm) spectrum was highly advantageous in differentiating each species. These results set a basis for an operational invasive species monitoring program in Hawai'i using spaceborne imaging spectroscopy.

AB - The unique ecosystems of the Hawaiian Islands are progressively being threatened following the introduction of exotic species. Operational implementation of remote sensing for the detection, mapping and monitoring of these biological invasions is currently hampered by a lack of knowledge on the spectral separability between native and invasive species. We used spaceborne imaging spectroscopy to analyze the seasonal dynamics of the canopy hyperspectral reflectance properties of four tree species: (i) Metrosideros polymorpha, a keystone native Hawaiian species; (ii) Acacia koa, a native Hawaiian nitrogen fixer; (iii) the highly invasive Psidium cattleianum; and (iv) Morella faya, a highly invasive nitrogen fixer. The species specific separability of the reflectance and derivative-reflectance signatures extracted from an Earth Observing-1 Hyperion time series, composed of 22 cloud-free images spanning a period of four years and was quantitatively evaluated using the Separability Index (SI). The analysis revealed that the Hawaiian native trees were universally unique from the invasive trees in their near-infrared-1 (700-1,250 nm) reflectance (0.4 > SI > 1.4). Due to its higher leaf area index, invasive trees generally had a higher near-infrared reflectance. To a lesser extent, it could also be demonstrated that nitrogen-fixing trees were spectrally unique from non-fixing trees. The higher leaf nitrogen content of nitrogen-fixing trees was expressed through slightly increased separabilities in visible and shortwave-infrared reflectance wavebands (SI = 0.4). We also found phenology to be key to spectral separability analysis. As such, it was shown that the spectral separability in the near-infrared-1 reflectance between the native and invasive species groups was more expressed in summer (SI > 0.7) than in winter (SI < 0.7). The lowest separability was observed for March-July (SI < 0.3). This could be explained by the invasives taking advantage of the warmer summer period to expand their canopy. There was, however, no specific time window or a single spectral region that always defined the separability of all species groups, and thus intensive monitoring of plant phenology as well as the use of the full-range (400-2,500 nm) spectrum was highly advantageous in differentiating each species. These results set a basis for an operational invasive species monitoring program in Hawai'i using spaceborne imaging spectroscopy.

KW - Earth observing-1

KW - Hyperion

KW - Morella faya

KW - Phenology

KW - Psidium cattleianum

KW - Spectral separability index

KW - Time series analysis

UR - http://www.scopus.com/inward/record.url?scp=84870683974&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84870683974&partnerID=8YFLogxK

U2 - 10.3390/rs4092510

DO - 10.3390/rs4092510

M3 - Article

AN - SCOPUS:84870683974

VL - 4

SP - 2510

EP - 2529

JO - Remote Sensing

JF - Remote Sensing

SN - 2072-4292

IS - 9

ER -