Hydrological and topographic determinants of biomass and species richness in a Mediterranean-climate shrubland

Samantha Díaz de León-Guerrero, Rodrigo Méndez-Alonzo, Stephen H. Bullock, Enrique R. Vivoni

Research output: Contribution to journalArticlepeer-review

Abstract

Background In arid and semiarid shrublands, water availability directly influences ecosystem properties. However, few empirical tests have determined the association between particular soil and hydrology traits with biodiversity and ecosystem biomass at the local scale. Methods We tested if plant species richness (S) and aboveground biomass (AGB) were associated with soil and topographic properties on 36 plots (ca. 12.5 m2) in 17 hectares of chaparral in the Mediterranean-climate of Valle de Guadalupe, Baja California, México. We used close-to-the-ground aerial photography to quantify sky-view cover per species, including all growth forms. We derived an elevation model (5 cm) from other aerial imagery. We estimated six soil properties (soil water potential, organic matter content, water content, pH, total dissolved solids concentration, and texture) and four landscape metrics (slope, aspect, elevation, and topographic index) for the 36 plots. We quantified the biomass of stems, leaves, and reproductive structures, per species. Results 86% of AGB was in stems, while non-woody species represented 0.7% of AGB but comprised 38% of S (29 species). Aboveground biomass and species richness were unrelated across the landscape. S was correlated with aspect and elevation (R = 0.53, aspect P = 0.035, elevation P = 0.05), while AGB (0.006–9.17 Kg m-2) increased with soil water potential and clay content (R = 0.51, P = 0.02, and P = 0.04). Only three species (11% of total S) occupied 65% of the total plant cover, and the remaining 26 represented only 35%. Cover was negatively correlated with S (R = -0.38, P = 0.02). 75% of AGB was concentrated in 30% of the 36 plots, and 96% of AGB corresponded to only 20% of 29 species. Discussion At the scale of small plots in our studied Mediterranean-climate shrubland in Baja California, AGB was most affected by soil water storage. AGB and cover were dominated by a few species, and only cover was negatively related to S. S was comprised mostly by uncommon species and tended to increase as plant cover decreased.

Original languageEnglish (US)
Article numbere0252154
JournalPloS one
Volume16
Issue number5 May
DOIs
StatePublished - May 2021

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Hydrological and topographic determinants of biomass and species richness in a Mediterranean-climate shrubland'. Together they form a unique fingerprint.

Cite this