Hydrogenation of the Martian Core by Hydrated Mantle Minerals With Implications for the Early Dynamo

J. G. O'Rourke, S. H. Shim

Research output: Contribution to journalArticle

2 Scopus citations

Abstract

Mars lacks an internally generated magnetic field today. Crustal remanent magnetism and meteorites indicate that a dynamo existed after accretion but died roughly four billion years ago. Standard models rely on core/mantle heat flow dropping below the adiabatic limit for thermal convection in the core. However, rapid core cooling after the Noachian is favored instead to produce long-lived mantle plumes and magmatism at volcanic provinces such as Tharsis and Elysium. Hydrogenation of the core could resolve this apparent contradiction by impeding the dynamo while core/mantle heat flow is superadiabatic. Here we present parameterized models for the rate at which mantle convection delivers hydrogen into the core. Our models suggest that most of the water that the mantle initially contained was effectively lost to the core. We predict that the mantle became increasingly ironrich over time and a stratified layer awaits detection in the uppermost core—analogous to the E′ layer atop Earth's core but likely thicker than alternative sources of stratification in the Martian core such as iron snow. Entraining buoyant, hydrogen-rich fluid downward in the core subtracts gravitational energy from the total dissipation budget for the dynamo. The calculated fluxes of hydrogen are high enough to potentially reduce the lifetime of the dynamo by several hundred million years or longer relative to conventional model predictions. Future work should address the complicated interactions between the stratified, hydrogen-rich layer and convection in the underlying core.

Original languageEnglish (US)
Pages (from-to)3422-3441
Number of pages20
JournalJournal of Geophysical Research: Planets
Volume124
Issue number12
DOIs
StatePublished - Dec 1 2019
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Hydrogenation of the Martian Core by Hydrated Mantle Minerals With Implications for the Early Dynamo'. Together they form a unique fingerprint.

  • Cite this