Abstract

Remediation of selenate (SeO4 2−) contamination through microbial reduction is often challenging due to the presence of sulfate (SO4 2−), which can lead to competition for the electron donor and the co-production of toxic H2S. Microbial reduction of SeO4 2− in the presence of SO4 2− was studied in two hydrogen-based membrane biofilm reactors (MBfRs). One MBfR was initiated with SO4 2−-reducing conditions and gradually shifted to SeO4 2− reduction. The second MBfR was developed with a SeO4 2−-reducing biofilm, followed by SO4 2− introduction. Biofilms within both MBfRs achieved greater than 90% SeO4 2− reduction, even though the SeO4 2− concentration ranged from 1,000–11,000 μg/L, more than 20–200 times the maximum contaminant level for drinking water (50 μg/L). Biofilm microbial community composition, assessed by 16S rRNA gene-based amplicon pyrosequencing, was distinct between the two MBfRs and was framed by alterations in SeO4 2− loading. Specifically, high SeO4 2− loading resulted in communities mainly composed of denitrifying bacteria (e.g., Denitratisoma and Dechloromonas). In contrast, low loading led to mostly sulfate-reducing bacteria (i.e., Desulfovibrio) and sulfur-oxidizing bacteria (i.e., Sulfuricurvum and Sulfurovum). SeO4 2− was reduced to elemental selenium (Se°), which was visualized within the biofilm as crystalloid aggregates, with its fate corresponding to that of biofilm solids. In conclusion, microbial biofilm communities initiated under either SeO4 2− or SO4 2−-reducing conditions attained high SeO4 2− removal rates even though their microbial community composition was quite distinct. Biotechnol. Bioeng. 2016;113: 1736–1744.

Original languageEnglish (US)
Pages (from-to)1736-1744
Number of pages9
JournalBiotechnology and Bioengineering
Volume113
Issue number8
DOIs
StatePublished - Aug 1 2016

Fingerprint

Selenic Acid
Selenium
Biofilms
Sulfates
Hydrogen
Membranes
Bacteria
Desulfovibrio
Poisons
Remediation
Chemical analysis
rRNA Genes
Sulfur
Potable water
Drinking Water

Keywords

  • biofilm
  • pyrosequencing
  • selenate
  • sulfate
  • sulfur-oxidizers
  • TEM-EDX

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Cite this

@article{1bdc814d52284de1b40863da92eb34a8,
title = "Hydrogen-fed biofilm reactors reducing selenate and sulfate: Community structure and capture of elemental selenium within the biofilm",
abstract = "Remediation of selenate (SeO4 2−) contamination through microbial reduction is often challenging due to the presence of sulfate (SO4 2−), which can lead to competition for the electron donor and the co-production of toxic H2S. Microbial reduction of SeO4 2− in the presence of SO4 2− was studied in two hydrogen-based membrane biofilm reactors (MBfRs). One MBfR was initiated with SO4 2−-reducing conditions and gradually shifted to SeO4 2− reduction. The second MBfR was developed with a SeO4 2−-reducing biofilm, followed by SO4 2− introduction. Biofilms within both MBfRs achieved greater than 90{\%} SeO4 2− reduction, even though the SeO4 2− concentration ranged from 1,000–11,000 μg/L, more than 20–200 times the maximum contaminant level for drinking water (50 μg/L). Biofilm microbial community composition, assessed by 16S rRNA gene-based amplicon pyrosequencing, was distinct between the two MBfRs and was framed by alterations in SeO4 2− loading. Specifically, high SeO4 2− loading resulted in communities mainly composed of denitrifying bacteria (e.g., Denitratisoma and Dechloromonas). In contrast, low loading led to mostly sulfate-reducing bacteria (i.e., Desulfovibrio) and sulfur-oxidizing bacteria (i.e., Sulfuricurvum and Sulfurovum). SeO4 2− was reduced to elemental selenium (Se°), which was visualized within the biofilm as crystalloid aggregates, with its fate corresponding to that of biofilm solids. In conclusion, microbial biofilm communities initiated under either SeO4 2− or SO4 2−-reducing conditions attained high SeO4 2− removal rates even though their microbial community composition was quite distinct. Biotechnol. Bioeng. 2016;113: 1736–1744.",
keywords = "biofilm, pyrosequencing, selenate, sulfate, sulfur-oxidizers, TEM-EDX",
author = "Aura Ontiveros-Valencia and Christopher Penton and Rosa Krajmalnik-Brown and Bruce Rittmann",
year = "2016",
month = "8",
day = "1",
doi = "10.1002/bit.25945",
language = "English (US)",
volume = "113",
pages = "1736--1744",
journal = "Biotechnology and Bioengineering",
issn = "0006-3592",
publisher = "Wiley-VCH Verlag",
number = "8",

}

TY - JOUR

T1 - Hydrogen-fed biofilm reactors reducing selenate and sulfate

T2 - Community structure and capture of elemental selenium within the biofilm

AU - Ontiveros-Valencia, Aura

AU - Penton, Christopher

AU - Krajmalnik-Brown, Rosa

AU - Rittmann, Bruce

PY - 2016/8/1

Y1 - 2016/8/1

N2 - Remediation of selenate (SeO4 2−) contamination through microbial reduction is often challenging due to the presence of sulfate (SO4 2−), which can lead to competition for the electron donor and the co-production of toxic H2S. Microbial reduction of SeO4 2− in the presence of SO4 2− was studied in two hydrogen-based membrane biofilm reactors (MBfRs). One MBfR was initiated with SO4 2−-reducing conditions and gradually shifted to SeO4 2− reduction. The second MBfR was developed with a SeO4 2−-reducing biofilm, followed by SO4 2− introduction. Biofilms within both MBfRs achieved greater than 90% SeO4 2− reduction, even though the SeO4 2− concentration ranged from 1,000–11,000 μg/L, more than 20–200 times the maximum contaminant level for drinking water (50 μg/L). Biofilm microbial community composition, assessed by 16S rRNA gene-based amplicon pyrosequencing, was distinct between the two MBfRs and was framed by alterations in SeO4 2− loading. Specifically, high SeO4 2− loading resulted in communities mainly composed of denitrifying bacteria (e.g., Denitratisoma and Dechloromonas). In contrast, low loading led to mostly sulfate-reducing bacteria (i.e., Desulfovibrio) and sulfur-oxidizing bacteria (i.e., Sulfuricurvum and Sulfurovum). SeO4 2− was reduced to elemental selenium (Se°), which was visualized within the biofilm as crystalloid aggregates, with its fate corresponding to that of biofilm solids. In conclusion, microbial biofilm communities initiated under either SeO4 2− or SO4 2−-reducing conditions attained high SeO4 2− removal rates even though their microbial community composition was quite distinct. Biotechnol. Bioeng. 2016;113: 1736–1744.

AB - Remediation of selenate (SeO4 2−) contamination through microbial reduction is often challenging due to the presence of sulfate (SO4 2−), which can lead to competition for the electron donor and the co-production of toxic H2S. Microbial reduction of SeO4 2− in the presence of SO4 2− was studied in two hydrogen-based membrane biofilm reactors (MBfRs). One MBfR was initiated with SO4 2−-reducing conditions and gradually shifted to SeO4 2− reduction. The second MBfR was developed with a SeO4 2−-reducing biofilm, followed by SO4 2− introduction. Biofilms within both MBfRs achieved greater than 90% SeO4 2− reduction, even though the SeO4 2− concentration ranged from 1,000–11,000 μg/L, more than 20–200 times the maximum contaminant level for drinking water (50 μg/L). Biofilm microbial community composition, assessed by 16S rRNA gene-based amplicon pyrosequencing, was distinct between the two MBfRs and was framed by alterations in SeO4 2− loading. Specifically, high SeO4 2− loading resulted in communities mainly composed of denitrifying bacteria (e.g., Denitratisoma and Dechloromonas). In contrast, low loading led to mostly sulfate-reducing bacteria (i.e., Desulfovibrio) and sulfur-oxidizing bacteria (i.e., Sulfuricurvum and Sulfurovum). SeO4 2− was reduced to elemental selenium (Se°), which was visualized within the biofilm as crystalloid aggregates, with its fate corresponding to that of biofilm solids. In conclusion, microbial biofilm communities initiated under either SeO4 2− or SO4 2−-reducing conditions attained high SeO4 2− removal rates even though their microbial community composition was quite distinct. Biotechnol. Bioeng. 2016;113: 1736–1744.

KW - biofilm

KW - pyrosequencing

KW - selenate

KW - sulfate

KW - sulfur-oxidizers

KW - TEM-EDX

UR - http://www.scopus.com/inward/record.url?scp=84977142614&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84977142614&partnerID=8YFLogxK

U2 - 10.1002/bit.25945

DO - 10.1002/bit.25945

M3 - Article

C2 - 26804665

AN - SCOPUS:84977142614

VL - 113

SP - 1736

EP - 1744

JO - Biotechnology and Bioengineering

JF - Biotechnology and Bioengineering

SN - 0006-3592

IS - 8

ER -