TY - JOUR
T1 - Hydrogen adsorption equilibrium and kinetics in metal-organic framework (MOF-5) synthesized with DEF approach
AU - Saha, Dipendu
AU - Wei, Zuojun
AU - Deng, Shuguang
N1 - Funding Information:
The authors wish to express their gratitude to US Army Research Office for providing financial support to this project through grant W911NF-06-1-0200.
Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/1/12
Y1 - 2009/1/12
N2 - MOF-5, also known as isoreticular MOF-1 (IRMOF-1) was successfully synthesized with diethyl formamide (DEF) as a solvent using modified procedures aiming at improving its crystal structure, pore texture and ultimately the hydrogen adsorption performance. The MOF-5 adsorbent was characterized with nitrogen adsorption for pore textural properties, scanning electron microscopy for crystal structure, and XRD for phase structure. Hydrogen adsorption in MOF-5 was measured at low pressure in a volumetric unit at 77 K, 194.5 K and 298 K and at hydrogen pressure up to 120 bar and 77 K in a gravimetric adsorption unit. The MOF-5 synthesized in this work has ideal pore textural properties with a large Langmuir (3917 m2/g) and BET specific surface area (2449 m2/g), a median pore size of 8.6 Å and a pore volume of 1.39 cm3/g. The MOF-5 adsorbent synthesized in this work has a hydrogen adsorption capacity of 1.46 wt.% at 77 K and 1 bar, an excess hydrogen adsorption capacity of 6.9 wt.% at 77 K and 100 bar, and an absolute hydrogen adsorption capacity of 11.8 wt.% at 77 K and 120 bar. Hydrogen diffusivity in MOF-5 estimated from the adsorption kinetic data measured at low pressure are 2.4 × 10-5 cm2/s, 5.2 × 10-5 cm2/s and 6.0 × 10-5 cm2/s at 77 K, 194.5 K and 298 K, respectively. The activation energy for hydrogen diffusion and the isosteric heat of adsorption for hydrogen adsorption in MOF-5 are 0.8 kJ/mol and 2.2-2.6 kJ/mol, respectively.
AB - MOF-5, also known as isoreticular MOF-1 (IRMOF-1) was successfully synthesized with diethyl formamide (DEF) as a solvent using modified procedures aiming at improving its crystal structure, pore texture and ultimately the hydrogen adsorption performance. The MOF-5 adsorbent was characterized with nitrogen adsorption for pore textural properties, scanning electron microscopy for crystal structure, and XRD for phase structure. Hydrogen adsorption in MOF-5 was measured at low pressure in a volumetric unit at 77 K, 194.5 K and 298 K and at hydrogen pressure up to 120 bar and 77 K in a gravimetric adsorption unit. The MOF-5 synthesized in this work has ideal pore textural properties with a large Langmuir (3917 m2/g) and BET specific surface area (2449 m2/g), a median pore size of 8.6 Å and a pore volume of 1.39 cm3/g. The MOF-5 adsorbent synthesized in this work has a hydrogen adsorption capacity of 1.46 wt.% at 77 K and 1 bar, an excess hydrogen adsorption capacity of 6.9 wt.% at 77 K and 100 bar, and an absolute hydrogen adsorption capacity of 11.8 wt.% at 77 K and 120 bar. Hydrogen diffusivity in MOF-5 estimated from the adsorption kinetic data measured at low pressure are 2.4 × 10-5 cm2/s, 5.2 × 10-5 cm2/s and 6.0 × 10-5 cm2/s at 77 K, 194.5 K and 298 K, respectively. The activation energy for hydrogen diffusion and the isosteric heat of adsorption for hydrogen adsorption in MOF-5 are 0.8 kJ/mol and 2.2-2.6 kJ/mol, respectively.
KW - Adsorption
KW - Equilibrium
KW - Hydrogen
KW - Kinetics
KW - MOF-5
UR - http://www.scopus.com/inward/record.url?scp=57449098599&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57449098599&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2008.10.022
DO - 10.1016/j.seppur.2008.10.022
M3 - Article
AN - SCOPUS:57449098599
SN - 1383-5866
VL - 64
SP - 280
EP - 287
JO - Gas Separation and Purification
JF - Gas Separation and Purification
IS - 3
ER -