Hydrocarbons catalysed by TmCYP4G122 and TmCYP4G123 in Tenebrio molitor modulate the olfactory response of the parasitoid Scleroderma guani

S. Y. Wang, Jennifer Hackney Price, D. Zhang

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Hydrocarbons (HCs) present on the epicuticle of terrestrial insects are not only used to reduce water loss but are also used as chemical signals. The cytochrome p450 CYP4G gene is essential for HC biosynthesis in some insects. However, its function in Tenebrio molitor is unknown. Moreover, it is not yet known whether CYP4G of a host can modulate the searching behaviours of its parasitoid. Here, we explore the function of the TmCYP4G122 and CYP4G123 genes in T. molitor. The TmCYP4G122 and CYP4G123 transcripts could be detected in all developmental stages. Their expression was higher in the fat body and abdominal cuticle than in the gut. Their transcript levels in mature larvae under desiccation stress [relative humidity (RH) < 5%] was significantly higher than that in the control (RH = 70%). Injection of dsCYP4G122 and dsCYP4G123 caused a reduction in HC biosynthesis and was associated with increased susceptibility to desiccation. Individuals of the parasitoid Scleroderma guani that emerged from mealworm pupae showed host preference for normal pupae whereas S. guani that emerged from pupae lacking CYP4G122 or/and CYP4G123 lost this searching preference. The current results confirm that CYP4G122 and CYP4G123 regulate the biosynthesis of HCs and modulate the olfactory response of its parasitoid S. guani.

Original languageEnglish (US)
JournalInsect Molecular Biology
DOIs
StatePublished - Jan 1 2019

Fingerprint

Tenebrio
Tenebrio molitor
Hydrocarbons
Pupa
hydrocarbons
pupae
Desiccation
biosynthesis
Humidity
Insects
relative humidity
Appetitive Behavior
searching behavior
insects
Fat Body
host preferences
Essential Genes
fat body
cytochrome P-450
Cytochrome P-450 Enzyme System

Keywords

  • CYP4G
  • hydrocarbon
  • olfactory
  • Scleroderma guani
  • Tenebrio molitor

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Insect Science

Cite this

@article{27b09491a63849b290361e4bad1f407d,
title = "Hydrocarbons catalysed by TmCYP4G122 and TmCYP4G123 in Tenebrio molitor modulate the olfactory response of the parasitoid Scleroderma guani",
abstract = "Hydrocarbons (HCs) present on the epicuticle of terrestrial insects are not only used to reduce water loss but are also used as chemical signals. The cytochrome p450 CYP4G gene is essential for HC biosynthesis in some insects. However, its function in Tenebrio molitor is unknown. Moreover, it is not yet known whether CYP4G of a host can modulate the searching behaviours of its parasitoid. Here, we explore the function of the TmCYP4G122 and CYP4G123 genes in T. molitor. The TmCYP4G122 and CYP4G123 transcripts could be detected in all developmental stages. Their expression was higher in the fat body and abdominal cuticle than in the gut. Their transcript levels in mature larvae under desiccation stress [relative humidity (RH) < 5{\%}] was significantly higher than that in the control (RH = 70{\%}). Injection of dsCYP4G122 and dsCYP4G123 caused a reduction in HC biosynthesis and was associated with increased susceptibility to desiccation. Individuals of the parasitoid Scleroderma guani that emerged from mealworm pupae showed host preference for normal pupae whereas S. guani that emerged from pupae lacking CYP4G122 or/and CYP4G123 lost this searching preference. The current results confirm that CYP4G122 and CYP4G123 regulate the biosynthesis of HCs and modulate the olfactory response of its parasitoid S. guani.",
keywords = "CYP4G, hydrocarbon, olfactory, Scleroderma guani, Tenebrio molitor",
author = "Wang, {S. Y.} and {Hackney Price}, Jennifer and D. Zhang",
year = "2019",
month = "1",
day = "1",
doi = "10.1111/imb.12581",
language = "English (US)",
journal = "Insect Molecular Biology",
issn = "0962-1075",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Hydrocarbons catalysed by TmCYP4G122 and TmCYP4G123 in Tenebrio molitor modulate the olfactory response of the parasitoid Scleroderma guani

AU - Wang, S. Y.

AU - Hackney Price, Jennifer

AU - Zhang, D.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Hydrocarbons (HCs) present on the epicuticle of terrestrial insects are not only used to reduce water loss but are also used as chemical signals. The cytochrome p450 CYP4G gene is essential for HC biosynthesis in some insects. However, its function in Tenebrio molitor is unknown. Moreover, it is not yet known whether CYP4G of a host can modulate the searching behaviours of its parasitoid. Here, we explore the function of the TmCYP4G122 and CYP4G123 genes in T. molitor. The TmCYP4G122 and CYP4G123 transcripts could be detected in all developmental stages. Their expression was higher in the fat body and abdominal cuticle than in the gut. Their transcript levels in mature larvae under desiccation stress [relative humidity (RH) < 5%] was significantly higher than that in the control (RH = 70%). Injection of dsCYP4G122 and dsCYP4G123 caused a reduction in HC biosynthesis and was associated with increased susceptibility to desiccation. Individuals of the parasitoid Scleroderma guani that emerged from mealworm pupae showed host preference for normal pupae whereas S. guani that emerged from pupae lacking CYP4G122 or/and CYP4G123 lost this searching preference. The current results confirm that CYP4G122 and CYP4G123 regulate the biosynthesis of HCs and modulate the olfactory response of its parasitoid S. guani.

AB - Hydrocarbons (HCs) present on the epicuticle of terrestrial insects are not only used to reduce water loss but are also used as chemical signals. The cytochrome p450 CYP4G gene is essential for HC biosynthesis in some insects. However, its function in Tenebrio molitor is unknown. Moreover, it is not yet known whether CYP4G of a host can modulate the searching behaviours of its parasitoid. Here, we explore the function of the TmCYP4G122 and CYP4G123 genes in T. molitor. The TmCYP4G122 and CYP4G123 transcripts could be detected in all developmental stages. Their expression was higher in the fat body and abdominal cuticle than in the gut. Their transcript levels in mature larvae under desiccation stress [relative humidity (RH) < 5%] was significantly higher than that in the control (RH = 70%). Injection of dsCYP4G122 and dsCYP4G123 caused a reduction in HC biosynthesis and was associated with increased susceptibility to desiccation. Individuals of the parasitoid Scleroderma guani that emerged from mealworm pupae showed host preference for normal pupae whereas S. guani that emerged from pupae lacking CYP4G122 or/and CYP4G123 lost this searching preference. The current results confirm that CYP4G122 and CYP4G123 regulate the biosynthesis of HCs and modulate the olfactory response of its parasitoid S. guani.

KW - CYP4G

KW - hydrocarbon

KW - olfactory

KW - Scleroderma guani

KW - Tenebrio molitor

UR - http://www.scopus.com/inward/record.url?scp=85063788554&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063788554&partnerID=8YFLogxK

U2 - 10.1111/imb.12581

DO - 10.1111/imb.12581

M3 - Article

JO - Insect Molecular Biology

JF - Insect Molecular Biology

SN - 0962-1075

ER -