Hybrid silicon/silicone (polydimethylsiloxane) microsystem for cell culture.

Jennifer Blain Christen, Andreas G. Andreou

Research output: Contribution to journalArticle

Abstract

We discuss the design, fabrication and testing of a hybrid microsystem for stand-alone cell culture and incubation. The micro-incubator is engineered through the integration of a silicon CMOS die for the heater and temperature sensor, with multilayer silicone PDMS (polydimethylsiloxane) structures namely, fluidic channels and a 4 mm diameter, 30 microL, culture well. A 25 micron thick PDMS membrane covers the top of the culture well, acting as barrier to contaminants while allowing the cells to exchange gases with the ambient environment. The packaging for the microsystem includes a flexible polyimide electronic ribbon cable and four fluidic ports that provide external interfaces to electrical energy, closed loop sensing and electronic control as well as solid and liquid supplies. The complete structure has a size of (2.5x2.5x0.6 cm3). We have employed the device to successfully culture BHK-21 cells autonomously over a sixty hour period in ambient environment.

Original languageEnglish (US)
Pages (from-to)2490-2493
Number of pages4
JournalConference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
StatePublished - 2006
Externally publishedYes

Fingerprint

Microsystems
Fluidics
Silicon
Silicones
Polydimethylsiloxane
Cell culture
Cell Culture Techniques
Flat cables
Incubators
Product Packaging
Temperature sensors
Polyimides
Packaging
Multilayers
Gases
Impurities
Membranes
Fabrication
Equipment and Supplies
Temperature

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{9455e4d0234d49d584deacbb6f3b591c,
title = "Hybrid silicon/silicone (polydimethylsiloxane) microsystem for cell culture.",
abstract = "We discuss the design, fabrication and testing of a hybrid microsystem for stand-alone cell culture and incubation. The micro-incubator is engineered through the integration of a silicon CMOS die for the heater and temperature sensor, with multilayer silicone PDMS (polydimethylsiloxane) structures namely, fluidic channels and a 4 mm diameter, 30 microL, culture well. A 25 micron thick PDMS membrane covers the top of the culture well, acting as barrier to contaminants while allowing the cells to exchange gases with the ambient environment. The packaging for the microsystem includes a flexible polyimide electronic ribbon cable and four fluidic ports that provide external interfaces to electrical energy, closed loop sensing and electronic control as well as solid and liquid supplies. The complete structure has a size of (2.5x2.5x0.6 cm3). We have employed the device to successfully culture BHK-21 cells autonomously over a sixty hour period in ambient environment.",
author = "Christen, {Jennifer Blain} and Andreou, {Andreas G.}",
year = "2006",
language = "English (US)",
pages = "2490--2493",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Hybrid silicon/silicone (polydimethylsiloxane) microsystem for cell culture.

AU - Christen, Jennifer Blain

AU - Andreou, Andreas G.

PY - 2006

Y1 - 2006

N2 - We discuss the design, fabrication and testing of a hybrid microsystem for stand-alone cell culture and incubation. The micro-incubator is engineered through the integration of a silicon CMOS die for the heater and temperature sensor, with multilayer silicone PDMS (polydimethylsiloxane) structures namely, fluidic channels and a 4 mm diameter, 30 microL, culture well. A 25 micron thick PDMS membrane covers the top of the culture well, acting as barrier to contaminants while allowing the cells to exchange gases with the ambient environment. The packaging for the microsystem includes a flexible polyimide electronic ribbon cable and four fluidic ports that provide external interfaces to electrical energy, closed loop sensing and electronic control as well as solid and liquid supplies. The complete structure has a size of (2.5x2.5x0.6 cm3). We have employed the device to successfully culture BHK-21 cells autonomously over a sixty hour period in ambient environment.

AB - We discuss the design, fabrication and testing of a hybrid microsystem for stand-alone cell culture and incubation. The micro-incubator is engineered through the integration of a silicon CMOS die for the heater and temperature sensor, with multilayer silicone PDMS (polydimethylsiloxane) structures namely, fluidic channels and a 4 mm diameter, 30 microL, culture well. A 25 micron thick PDMS membrane covers the top of the culture well, acting as barrier to contaminants while allowing the cells to exchange gases with the ambient environment. The packaging for the microsystem includes a flexible polyimide electronic ribbon cable and four fluidic ports that provide external interfaces to electrical energy, closed loop sensing and electronic control as well as solid and liquid supplies. The complete structure has a size of (2.5x2.5x0.6 cm3). We have employed the device to successfully culture BHK-21 cells autonomously over a sixty hour period in ambient environment.

UR - http://www.scopus.com/inward/record.url?scp=84903861247&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903861247&partnerID=8YFLogxK

M3 - Article

SP - 2490

EP - 2493

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -