Hybrid controllers for path planning: A temporal logic approach

Georgios E. Fainekos, Hadas Kress-Gazit, George J. Pappas

Research output: Chapter in Book/Report/Conference proceedingConference contribution

140 Scopus citations

Abstract

Robot motion planning algorithms have focused on low-level reachability goals taking into account robot kinematics, or on high level task planning while ignoring low-level dynamics. In this paper, we present an integrated approach to the design of closed-loop hybrid controllers that guarantee by construction that the resulting continuous robot trajectories satisfy sophisticated specifications expressed in the so-called Linear Temporal Logic. In addition, our framework ensures that the temporal logic specification is satisfied even in the presence of an adversary that may instantaneously reposition the robot within the environment a finite number of times. This is achieved by obtaining a Büchi automaton realization of the temporal logic specification, which supervises a finite family of continuous feedback controllers, ensuring consistency between the discrete plan and the continuous execution.

Original languageEnglish (US)
Title of host publicationProceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05
Pages4885-4890
Number of pages6
DOIs
StatePublished - 2005
Externally publishedYes
Event44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05 - Seville, Spain
Duration: Dec 12 2005Dec 15 2005

Publication series

NameProceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05
Volume2005

Other

Other44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05
Country/TerritorySpain
CitySeville
Period12/12/0512/15/05

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Hybrid controllers for path planning: A temporal logic approach'. Together they form a unique fingerprint.

Cite this