TY - JOUR
T1 - H2O2 Production in Microbial Electrochemical Cells Fed with Primary Sludge
AU - Ki, Dongwon
AU - Popat, Sudeep C.
AU - Rittmann, Bruce
AU - Torres, Cesar
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/6/6
Y1 - 2017/6/6
N2 - We developed an energy-efficient, flat-plate, dual-chambered microbial peroxide producing cell (MPPC) as an anaerobic energy-conversion technology for converting primary sludge (PS) at the anode and producing hydrogen peroxide (H2O2) at the cathode. We operated the MPPC with a 9 day hydraulic retention time in the anode. A maximum H2O2 concentration of ∼230 mg/L was achieved in 6 h of batch cathode operation. This is the first demonstration of H2O2 production using PS in an MPPC, and the energy requirement for H2O2 production was low (∼0.87 kWh/kg H2O2) compared to previous studies using real wastewaters. The H2O2 gradually decayed with time due to the diffusion of H2O2-scavenging carbonate ions from the anode. We compared the anodic performance with a H2-producing microbial electrolysis cell (MEC). Both cells (MEC and MPPC) achieved ∼30% Coulombic recovery. While similar microbial communities were present in the anode suspension and anode biofilm for the two operating modes, aerobic bacteria were significant only on the side of the anode facing the membrane in the MPPC. Coupled with a lack of methane production in the MPPC, the presence of aerobic bacteria suggests that H2O2 diffusion to the anode side caused inhibition of methanogens, which led to the decrease in chemical oxygen demand removal. Thus, the Coulombic efficiency was ∼16% higher in the MPPC than in the MEC (64% versus 48%, respectively).
AB - We developed an energy-efficient, flat-plate, dual-chambered microbial peroxide producing cell (MPPC) as an anaerobic energy-conversion technology for converting primary sludge (PS) at the anode and producing hydrogen peroxide (H2O2) at the cathode. We operated the MPPC with a 9 day hydraulic retention time in the anode. A maximum H2O2 concentration of ∼230 mg/L was achieved in 6 h of batch cathode operation. This is the first demonstration of H2O2 production using PS in an MPPC, and the energy requirement for H2O2 production was low (∼0.87 kWh/kg H2O2) compared to previous studies using real wastewaters. The H2O2 gradually decayed with time due to the diffusion of H2O2-scavenging carbonate ions from the anode. We compared the anodic performance with a H2-producing microbial electrolysis cell (MEC). Both cells (MEC and MPPC) achieved ∼30% Coulombic recovery. While similar microbial communities were present in the anode suspension and anode biofilm for the two operating modes, aerobic bacteria were significant only on the side of the anode facing the membrane in the MPPC. Coupled with a lack of methane production in the MPPC, the presence of aerobic bacteria suggests that H2O2 diffusion to the anode side caused inhibition of methanogens, which led to the decrease in chemical oxygen demand removal. Thus, the Coulombic efficiency was ∼16% higher in the MPPC than in the MEC (64% versus 48%, respectively).
UR - http://www.scopus.com/inward/record.url?scp=85020844747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85020844747&partnerID=8YFLogxK
U2 - 10.1021/acs.est.7b00174
DO - 10.1021/acs.est.7b00174
M3 - Article
C2 - 28485588
AN - SCOPUS:85020844747
SN - 0013-936X
VL - 51
SP - 6139
EP - 6145
JO - Environmental Science & Technology
JF - Environmental Science & Technology
IS - 11
ER -