Abstract
Pd2Si layers produced by evaporation or sputtering onto silicon substrates were examined by high resolution electron microscopy, microdiffraction, X-ray, energy loss and Auger spectroscopy. The SiPd2Si interfaces produced by evaporation were in all cases rougher and more polycrystalline than those produced by sputtering. X-ray microanalysis showed the predictable variation in palladium distribution across the interface but quantification did not produce the expected palladium-to-silicon ratios, primarily because of probe broadening and X-ray-induced fluorescence. Energy loss spectra showed plasmon energy shifts and changes in Si L edge shape due to bond formation with palladium. Auger data provided evidence for a small amount of oxygen at the SiPd2 interface. Electrical measurements of the ideality factor for Schottky barriers made from these materials produced higher values for the rougher evaporation-formed interfaces consistent with interface-roughness-induced scattering and carrier recombination.
Original language | English (US) |
---|---|
Pages (from-to) | 17-29 |
Number of pages | 13 |
Journal | Thin Solid Films |
Volume | 104 |
Issue number | 1-2 |
DOIs | |
State | Published - Jun 17 1983 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry