High-throughput imaging of heterogeneous cell organelles with an X-ray laser

Max F. Hantke, Dirk Hasse, Filipe R N C Maia, Tomas Ekeberg, Katja John, Martin Svenda, N. Duane Loh, Andrew V. Martin, Nicusor Timneanu, Daniel S D Larsson, Gijs Van Der Schot, Gunilla H. Carlsson, Margareta Ingelman, Jakob Andreasson, Daniel Westphal, Mengning Liang, Francesco Stellato, Daniel P. Deponte, Robert Hartmann, Nils KimmelRichard Kirian, M. Marvin Seibert, Kerstin Mühlig, Sebastian Schorb, Ken Ferguson, Christoph Bostedt, Sebastian Carron, John D. Bozek, Daniel Rolles, Artem Rudenko, Sascha Epp, Henry N. Chapman, Anton Barty, Janos Hajdu, Inger Andersson

Research output: Contribution to journalArticle

83 Citations (Scopus)

Abstract

We overcome two of the most daunting challenges in single-particle diffractive imaging: collecting many high-quality diffraction patterns on a small amount of sample and separating components from mixed samples. We demonstrate this on carboxysomes, which are polyhedral cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12...min with the Linac Coherent Light Source running at 120...Hz. We separate different structures directly from the diffraction data and show that the size distribution is preserved during sample delivery. We automate phase retrieval and avoid reconstruction artefacts caused by missing modes. We attain the highest-resolution reconstructions on the smallest single biological objects imaged with an X-ray laser to date. These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere.

Original languageEnglish (US)
Pages (from-to)943-949
Number of pages7
JournalNature Photonics
Volume8
Issue number12
DOIs
StatePublished - Nov 27 2014
Externally publishedYes

Fingerprint

X ray lasers
organelles
Diffraction patterns
Throughput
Imaging techniques
Aerosols
cells
lasers
Light sources
x rays
diffraction patterns
Carbon
Diffraction
Earth (planet)
coherent light
injectors
biology
low noise
retrieval
flash

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Cite this

Hantke, M. F., Hasse, D., Maia, F. R. N. C., Ekeberg, T., John, K., Svenda, M., ... Andersson, I. (2014). High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics, 8(12), 943-949. https://doi.org/10.1038/nphoton.2014.270

High-throughput imaging of heterogeneous cell organelles with an X-ray laser. / Hantke, Max F.; Hasse, Dirk; Maia, Filipe R N C; Ekeberg, Tomas; John, Katja; Svenda, Martin; Loh, N. Duane; Martin, Andrew V.; Timneanu, Nicusor; Larsson, Daniel S D; Van Der Schot, Gijs; Carlsson, Gunilla H.; Ingelman, Margareta; Andreasson, Jakob; Westphal, Daniel; Liang, Mengning; Stellato, Francesco; Deponte, Daniel P.; Hartmann, Robert; Kimmel, Nils; Kirian, Richard; Seibert, M. Marvin; Mühlig, Kerstin; Schorb, Sebastian; Ferguson, Ken; Bostedt, Christoph; Carron, Sebastian; Bozek, John D.; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Chapman, Henry N.; Barty, Anton; Hajdu, Janos; Andersson, Inger.

In: Nature Photonics, Vol. 8, No. 12, 27.11.2014, p. 943-949.

Research output: Contribution to journalArticle

Hantke, MF, Hasse, D, Maia, FRNC, Ekeberg, T, John, K, Svenda, M, Loh, ND, Martin, AV, Timneanu, N, Larsson, DSD, Van Der Schot, G, Carlsson, GH, Ingelman, M, Andreasson, J, Westphal, D, Liang, M, Stellato, F, Deponte, DP, Hartmann, R, Kimmel, N, Kirian, R, Seibert, MM, Mühlig, K, Schorb, S, Ferguson, K, Bostedt, C, Carron, S, Bozek, JD, Rolles, D, Rudenko, A, Epp, S, Chapman, HN, Barty, A, Hajdu, J & Andersson, I 2014, 'High-throughput imaging of heterogeneous cell organelles with an X-ray laser', Nature Photonics, vol. 8, no. 12, pp. 943-949. https://doi.org/10.1038/nphoton.2014.270
Hantke MF, Hasse D, Maia FRNC, Ekeberg T, John K, Svenda M et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics. 2014 Nov 27;8(12):943-949. https://doi.org/10.1038/nphoton.2014.270
Hantke, Max F. ; Hasse, Dirk ; Maia, Filipe R N C ; Ekeberg, Tomas ; John, Katja ; Svenda, Martin ; Loh, N. Duane ; Martin, Andrew V. ; Timneanu, Nicusor ; Larsson, Daniel S D ; Van Der Schot, Gijs ; Carlsson, Gunilla H. ; Ingelman, Margareta ; Andreasson, Jakob ; Westphal, Daniel ; Liang, Mengning ; Stellato, Francesco ; Deponte, Daniel P. ; Hartmann, Robert ; Kimmel, Nils ; Kirian, Richard ; Seibert, M. Marvin ; Mühlig, Kerstin ; Schorb, Sebastian ; Ferguson, Ken ; Bostedt, Christoph ; Carron, Sebastian ; Bozek, John D. ; Rolles, Daniel ; Rudenko, Artem ; Epp, Sascha ; Chapman, Henry N. ; Barty, Anton ; Hajdu, Janos ; Andersson, Inger. / High-throughput imaging of heterogeneous cell organelles with an X-ray laser. In: Nature Photonics. 2014 ; Vol. 8, No. 12. pp. 943-949.
@article{ce431b427f694739b9354241ad571d73,
title = "High-throughput imaging of heterogeneous cell organelles with an X-ray laser",
abstract = "We overcome two of the most daunting challenges in single-particle diffractive imaging: collecting many high-quality diffraction patterns on a small amount of sample and separating components from mixed samples. We demonstrate this on carboxysomes, which are polyhedral cell organelles that vary in size and facilitate up to 40{\%} of Earth's carbon fixation. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12...min with the Linac Coherent Light Source running at 120...Hz. We separate different structures directly from the diffraction data and show that the size distribution is preserved during sample delivery. We automate phase retrieval and avoid reconstruction artefacts caused by missing modes. We attain the highest-resolution reconstructions on the smallest single biological objects imaged with an X-ray laser to date. These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere.",
author = "Hantke, {Max F.} and Dirk Hasse and Maia, {Filipe R N C} and Tomas Ekeberg and Katja John and Martin Svenda and Loh, {N. Duane} and Martin, {Andrew V.} and Nicusor Timneanu and Larsson, {Daniel S D} and {Van Der Schot}, Gijs and Carlsson, {Gunilla H.} and Margareta Ingelman and Jakob Andreasson and Daniel Westphal and Mengning Liang and Francesco Stellato and Deponte, {Daniel P.} and Robert Hartmann and Nils Kimmel and Richard Kirian and Seibert, {M. Marvin} and Kerstin M{\"u}hlig and Sebastian Schorb and Ken Ferguson and Christoph Bostedt and Sebastian Carron and Bozek, {John D.} and Daniel Rolles and Artem Rudenko and Sascha Epp and Chapman, {Henry N.} and Anton Barty and Janos Hajdu and Inger Andersson",
year = "2014",
month = "11",
day = "27",
doi = "10.1038/nphoton.2014.270",
language = "English (US)",
volume = "8",
pages = "943--949",
journal = "Nature Photonics",
issn = "1749-4885",
publisher = "Nature Publishing Group",
number = "12",

}

TY - JOUR

T1 - High-throughput imaging of heterogeneous cell organelles with an X-ray laser

AU - Hantke, Max F.

AU - Hasse, Dirk

AU - Maia, Filipe R N C

AU - Ekeberg, Tomas

AU - John, Katja

AU - Svenda, Martin

AU - Loh, N. Duane

AU - Martin, Andrew V.

AU - Timneanu, Nicusor

AU - Larsson, Daniel S D

AU - Van Der Schot, Gijs

AU - Carlsson, Gunilla H.

AU - Ingelman, Margareta

AU - Andreasson, Jakob

AU - Westphal, Daniel

AU - Liang, Mengning

AU - Stellato, Francesco

AU - Deponte, Daniel P.

AU - Hartmann, Robert

AU - Kimmel, Nils

AU - Kirian, Richard

AU - Seibert, M. Marvin

AU - Mühlig, Kerstin

AU - Schorb, Sebastian

AU - Ferguson, Ken

AU - Bostedt, Christoph

AU - Carron, Sebastian

AU - Bozek, John D.

AU - Rolles, Daniel

AU - Rudenko, Artem

AU - Epp, Sascha

AU - Chapman, Henry N.

AU - Barty, Anton

AU - Hajdu, Janos

AU - Andersson, Inger

PY - 2014/11/27

Y1 - 2014/11/27

N2 - We overcome two of the most daunting challenges in single-particle diffractive imaging: collecting many high-quality diffraction patterns on a small amount of sample and separating components from mixed samples. We demonstrate this on carboxysomes, which are polyhedral cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12...min with the Linac Coherent Light Source running at 120...Hz. We separate different structures directly from the diffraction data and show that the size distribution is preserved during sample delivery. We automate phase retrieval and avoid reconstruction artefacts caused by missing modes. We attain the highest-resolution reconstructions on the smallest single biological objects imaged with an X-ray laser to date. These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere.

AB - We overcome two of the most daunting challenges in single-particle diffractive imaging: collecting many high-quality diffraction patterns on a small amount of sample and separating components from mixed samples. We demonstrate this on carboxysomes, which are polyhedral cell organelles that vary in size and facilitate up to 40% of Earth's carbon fixation. A new aerosol sample-injector allowed us to record 70,000 low-noise diffraction patterns in 12...min with the Linac Coherent Light Source running at 120...Hz. We separate different structures directly from the diffraction data and show that the size distribution is preserved during sample delivery. We automate phase retrieval and avoid reconstruction artefacts caused by missing modes. We attain the highest-resolution reconstructions on the smallest single biological objects imaged with an X-ray laser to date. These advances lay the foundations for accurate, high-throughput structure determination by flash-diffractive imaging and offer a means to study structure and structural heterogeneity in biology and elsewhere.

UR - http://www.scopus.com/inward/record.url?scp=84927578680&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84927578680&partnerID=8YFLogxK

U2 - 10.1038/nphoton.2014.270

DO - 10.1038/nphoton.2014.270

M3 - Article

AN - SCOPUS:84927578680

VL - 8

SP - 943

EP - 949

JO - Nature Photonics

JF - Nature Photonics

SN - 1749-4885

IS - 12

ER -