High-throughput 3D printing of customized imaging lenses

Xiangfan Chen, Wenzhong Liu, Biqin Dong, Henry Oliver T. Ware, Hao F. Zhang, Cheng Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The emerging 3D printing technology has the potential to transform manufacturing customized optical elements, which currently heavily relies on the time-consuming and costly polishing and grinding processes. However, the inherent speedaccuracy trade-off seriously constraints the practical applications of 3D printing technology in optical realm. In addressing this issue, here, we report a new method featuring a significantly faster fabrication speed, at 24.54 mm3/h, without compromising the fabrication accuracy or surface finish required to 3D-print customized optical components. We demonstrated a high-speed 3D printing process with deep subwavelength (sub-10 nm) surface roughness by employing the projection micro-stereolithography process and the synergistic effects from the grayscale photopolymerization and the meniscus equilibrium post-curing methods. Fabricating a customized aspheric lens with 5 mm in height and 3 mm in diameter could be accomplished in less than four hours. The 3D-printed singlet aspheric lens demonstrated a maximal imaging resolution of 2.19 μm with low field distortion less than 0.13% across a 2-mm field of view. This work demonstrates the potential of 3D printing for rapid manufacturing of optical components.

Original languageEnglish (US)
Title of host publicationAdditive Manufacturing; Bio and Sustainable Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791851357
DOIs
StatePublished - 2018
Externally publishedYes
EventASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018 - College Station, United States
Duration: Jun 18 2018Jun 22 2018

Publication series

NameASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018
Volume1

Other

OtherASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018
Country/TerritoryUnited States
CityCollege Station
Period6/18/186/22/18

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'High-throughput 3D printing of customized imaging lenses'. Together they form a unique fingerprint.

Cite this