High order edge sensors with ℓ 1 regularization for enhanced discontinuous Galerkin methods

Jan Glaubitz, Anne Gelb

Research output: Contribution to journalArticle

2 Scopus citations


This paper investigates the use of ℓ 1 regularization for solving hyperbolic conservation laws based on high order discontinuous Galerkin (DG) approximations. We first use the polynomial annihilation method to construct a high order edge sensor which enables us to flag “troubled” elements. The DG approximation is enhanced in these troubled regions by activating ℓ 1 regularization to promote sparsity in the corresponding jump function of the numerical solution. The resulting ℓ 1 optimization problem is efficiently implemented using the alternating direction method of multipliers. By enacting ℓ 1 regularization only in troubled cells, our method remains accurate and efficient, as no additional regularization or expensive iterative procedures are needed in smooth regions. We present results for the inviscid Burgers' equation as well as a nonlinear system of conservation laws using a nodal collocation-type DG method as a solver.

Original languageEnglish (US)
Pages (from-to)A1304-A1330
JournalSIAM Journal on Scientific Computing
Issue number2
Publication statusPublished - Jan 1 2019
Externally publishedYes



  • Discontinuity sensor
  • Discontinuous Galerkin
  • Hyperbolic conservation laws
  • Polynomial annihilation
  • Shock capturing
  • ℓ regularization

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics

Cite this