Head-mounted sensors and wearable computing for automatic tunnel vision assessment

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As the second leading cause of blindness worldwide, glaucoma impacts a large population of individuals over 40. Although visual acuity often remains unaffected in early stages of the disease, visual field loss, expressed by tunnel vision condition, gradually increases. Glaucoma often remains undetected until it has moved into advanced stages. In this paper, we introduce a wearable system for automatic tunnel vision detection using head-mounted sensors and machine learning techniques. We develop several tasks, including reading and observation, and estimate visual field loss by analyzing user's head movements while performing the tasks. An integrated computational module takes sensor signals as input, passes the data through several automatic data processing phases, and returns a final result by merging task-level predictions. For validation purposes, a series of experiments is conducted with 10 participants using tunnel vision simulators. Our results demonstrate that the proposed system can detect mild and moderate tunnel visions with an accuracy of 93.3% using a leave-one-subject-out analysis.

Original languageEnglish (US)
Title of host publicationProceedings of the 2017 Design, Automation and Test in Europe, DATE 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages634-637
Number of pages4
ISBN (Electronic)9783981537093
DOIs
StatePublished - May 11 2017
Externally publishedYes
Event20th Design, Automation and Test in Europe, DATE 2017 - Swisstech, Lausanne, Switzerland
Duration: Mar 27 2017Mar 31 2017

Publication series

NameProceedings of the 2017 Design, Automation and Test in Europe, DATE 2017

Other

Other20th Design, Automation and Test in Europe, DATE 2017
Country/TerritorySwitzerland
CitySwisstech, Lausanne
Period3/27/173/31/17

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Head-mounted sensors and wearable computing for automatic tunnel vision assessment'. Together they form a unique fingerprint.

Cite this