Abstract
In this paper we consider the Hartogs-type extension problem for unbounded domains in C2. An easy necessary condition for a domain to be of Hartogs-type is that there is no a closed (in C2) complex variety of codimension one in the domain which is given by a holomorphic function smooth up to the boundary. The question is, how far this necessary condition is from the sufficient one? To show how complicated this question is, we give a class of tube-like domains which contain a complex line in the boundary which are either of Hartogs-type or not, depending on how the complex line is positioned with respect to the domain.
Original language | English (US) |
---|---|
Pages (from-to) | 35-60 |
Number of pages | 26 |
Journal | Mathematische Annalen |
Volume | 363 |
Issue number | 1-2 |
DOIs | |
State | Published - Oct 13 2015 |
Keywords
- 32D15
- Primary 32V10
- Secondary 32V25
ASJC Scopus subject areas
- Mathematics(all)