Graph Prototypical Networks for Few-shot Learning on Attributed Networks

Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, Huan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Attributed networks nowadays are ubiquitous in a myriad of high-impact applications, such as social network analysis, financial fraud detection, and drug discovery. As a central analytical task on attributed networks, node classification has received much attention in the research community. In real-world attributed networks, a large portion of node classes only contains limited labeled instances, rendering a long-tail node class distribution. Existing node classification algorithms are unequipped to handle the few-shot node classes. As a remedy, few-shot learning has attracted a surge of attention in the research community. Yet, few-shot node classification remains a challenging problem as we need to address the following questions: (i) How to extract meta-knowledge from an attributed network for few-shot node classification? (ii) How to identify the informativeness of each labeled instance for building a robust and effective model? To answer these questions, in this paper, we propose a graph meta-learning framework - Graph Prototypical Networks (GPN). By constructing a pool of semi-supervised node classification tasks to mimic the real test environment, GPN is able to perform meta-learning on an attributed network and derive a highly generalizable model for handling the target classification task. Extensive experiments demonstrate the superior capability of GPN in few-shot node classification.

Original languageEnglish (US)
Title of host publicationCIKM 2020 - Proceedings of the 29th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages295-304
Number of pages10
ISBN (Electronic)9781450368599
DOIs
StatePublished - Oct 19 2020
Event29th ACM International Conference on Information and Knowledge Management, CIKM 2020 - Virtual, Online, Ireland
Duration: Oct 19 2020Oct 23 2020

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference29th ACM International Conference on Information and Knowledge Management, CIKM 2020
CountryIreland
CityVirtual, Online
Period10/19/2010/23/20

Keywords

  • attributed networks
  • few-shot learning
  • graph neural networks

ASJC Scopus subject areas

  • Business, Management and Accounting(all)
  • Decision Sciences(all)

Fingerprint Dive into the research topics of 'Graph Prototypical Networks for Few-shot Learning on Attributed Networks'. Together they form a unique fingerprint.

Cite this