Graph minimally-supervised learning

Kaize Ding, Jundong Li, Nitesh Chawla, Huan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Graphs are widely used for abstracting complex systems of interacting objects, such as social networks, knowledge graphs, and traffic networks, as well as for modeling molecules, manifolds, and source code. To model such graph-structured data, graph learning, in particular deep graph learning with graph neural networks, has drawn much attention in both academic and industrial communities lately. Prevailing graph learning methods usually rely on learning from "big'' data, requiring a large amount of labeled data for model training. However, it is common that graphs are associated with "small'' labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph learning with minimal human supervision for the low-resource settings where limited or even no labeled data is available. In this tutorial, we will focus on the state-of-the-art techniques of Graph Minimally-supervised Learning, in particular a series of weakly-supervised learning, few-shot learning, and self-supervised learning methods on graph-structured data as well as their real-world applications. The objectives of this tutorial are to: (1) formally categorize the problems in graph minimally-supervised learning and discuss the challenges under different learning scenarios; (2) comprehensively review the existing and recent advances of graph minimally-supervised learning; and (3) elucidate open questions and future research directions. This tutorial introduces major topics within minimally-supervised learning and offers a guide to a new frontier of graph learning. We believe this tutorial is beneficial to researchers and practitioners, allowing them to collaborate on graph learning.

Original languageEnglish (US)
Title of host publicationWSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining
PublisherAssociation for Computing Machinery, Inc
Pages1620-1622
Number of pages3
ISBN (Electronic)9781450391320
DOIs
StatePublished - Feb 11 2022
Event15th ACM International Conference on Web Search and Data Mining, WSDM 2022 - Virtual, Online, United States
Duration: Feb 21 2022Feb 25 2022

Publication series

NameWSDM 2022 - Proceedings of the 15th ACM International Conference on Web Search and Data Mining

Conference

Conference15th ACM International Conference on Web Search and Data Mining, WSDM 2022
Country/TerritoryUnited States
CityVirtual, Online
Period2/21/222/25/22

Keywords

  • Few-shot learning
  • Graph neural networks
  • Self-supervised learning
  • Weakly-supervised learning

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'Graph minimally-supervised learning'. Together they form a unique fingerprint.

Cite this