Go-CHART: A miniature remotely accessible self-driving car robot

Shenbagaraj Kannapiran, Spring Berman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Go-CHART is a four-wheel, skid-steer robot that resembles a 1:28 scale standard commercial sedan. It is equipped with an onboard sensor suite and both onboard and external computers that replicate many of the sensing and computation capabilities of a full-size autonomous vehicle. The Go-CHART can autonomously navigate a small-scale traffic testbed, responding to its sensor input with programmed controllers. Alternatively, it can be remotely driven by a user who views the testbed through the robot's four camera feeds, which facilitates safe, controlled experiments on driver interactions with driverless vehicles. We demonstrate the Go-CHART's ability to perform lane tracking and detection of traffic signs, traffic signals, and other Go-CHARTs in real-time, utilizing an external GPU that runs computationally intensive computer vision and deep learning algorithms.

Original languageEnglish (US)
Title of host publication2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2265-2272
Number of pages8
ISBN (Electronic)9781728162126
DOIs
StatePublished - Oct 24 2020
Event2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
Duration: Oct 24 2020Jan 24 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
CountryUnited States
CityLas Vegas
Period10/24/201/24/21

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Go-CHART: A miniature remotely accessible self-driving car robot'. Together they form a unique fingerprint.

Cite this