Glass transition temperature from the chemical structure of conjugated polymers

Renxuan Xie, Albree R. Weisen, Youngmin Lee, Melissa A. Aplan, Abigail M. Fenton, Ashley E. Masucci, Fabian Kempe, Michael Sommer, Christian W. Pester, Ralph H. Colby, Enrique D. Gomez

Research output: Contribution to journalArticlepeer-review

139 Scopus citations

Abstract

The glass transition temperature (Tg) is a key property that dictates the applicability of conjugated polymers. The Tg demarks the transition into a brittle glassy state, making its accurate prediction for conjugated polymers crucial for the design of soft, stretchable, or flexible electronics. Here we show that a single adjustable parameter can be used to build a relationship between the Tg and the molecular structure of 32 semiflexible (mostly conjugated) polymers that differ drastically in aromatic backbone and alkyl side chain chemistry. An effective mobility value, ζ, is calculated using an assigned atomic mobility value within each repeat unit. The only adjustable parameter in the calculation of ζ is the ratio of mobility between conjugated and non-conjugated atoms. We show that ζ correlates strongly to the Tg, and that this simple method predicts the Tg with a root-mean-square error of 13 °C for conjugated polymers with alkyl side chains.

Original languageEnglish (US)
Article number893
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Glass transition temperature from the chemical structure of conjugated polymers'. Together they form a unique fingerprint.

Cite this