Geomorphic limits to climate-induced increases in topographic relief

Kelin X. Whipple, Eric Kirby, Simon H. Brocklehurst

Research output: Contribution to journalArticlepeer-review

452 Scopus citations

Abstract

Recognition of the potential for strong dynamic coupling between atmospheric and tectonic processes has sparked intense cross-disciplinary investigation and debate on the question of whether tectonics have driven long-term climate change or vice versa. It has been proposed that climate change might have driven the uplift of mountain summits through an isostatic response to valley incision. Because isostasy acts to compensate mean elevations, the debate hinges on the question of whether climate change can significantly increase topographic relief or, more precisely, increase the volume of 'missing mass' between summits and ridges. Here we show that, in tectonically active mountain ranges, geomorphic constraints allow only a relatively small increase in topographic relief in response to climate change. Thus, although climate change may cause significant increases in denudation rates, potentially establishing an important feedback between surficial and crustal processes, neither fluvial nor glacial erosion is likely to induce significant isostatic peak uplift.

Original languageEnglish (US)
Pages (from-to)39-43
Number of pages5
JournalNature
Volume401
Issue number6748
DOIs
StatePublished - Sep 2 1999
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Geomorphic limits to climate-induced increases in topographic relief'. Together they form a unique fingerprint.

Cite this