TY - JOUR
T1 - Geomorphic evidence for the geometry and slip rate of a young, low-angle thrust fault
T2 - Implications for hazard assessment and fault interaction in complex tectonic environments
AU - Hughes, A.
AU - Rood, D. H.
AU - Whittaker, A. C.
AU - Bell, R. E.
AU - Rockwell, T. K.
AU - Levy, Y.
AU - Wilcken, K. M.
AU - Corbett, L. B.
AU - Bierman, P. R.
AU - DeVecchio, Duane
AU - Marshall, S. T.
AU - Gurrola, L. D.
AU - Nicholson, C.
N1 - Funding Information:
The authors thank C. Singer and R. Davey for assistance during field work and sample collection, and A. Hidy for invaluable advice on modeling depth profiles. This research was supported by the Southern California Earthquake Center (SCEC) (Contribution No. 8903). SCEC is funded by NSF Cooperative Agreement EAR-1033462 & USGS Cooperative Agreement G12AC20038. This work was supported by funding from SCEC award numbers 15100 (to DHR and DDV), 17184 (to DHR), 16049 (to TKR), and 17024 (to TKR). The authors also acknowledge the financial support from the Australian Government for the Centre for Accelerator Science at the Australian Nuclear Science and Technology Organisation (ANSTO) through the National Collaborative Research Infrastructure Strategy (NCRIS). This work was completed thanks to ANSTO award number 10125 (to DHR). Additional funding was supplied by a Geological Society of London post-graduate research grant (to AH) and a post-graduate research grant from the British Society for Geomorphology (to AH). Finally, we thank Richard Heermance for constructive comments and revisions of this article.
Funding Information:
The authors thank C. Singer and R. Davey for assistance during field work and sample collection, and A. Hidy for invaluable advice on modeling depth profiles. This research was supported by the Southern California Earthquake Center (SCEC) (Contribution No. 8903 ). SCEC is funded by NSF Cooperative Agreement EAR-1033462 & USGS Cooperative Agreement G12AC20038. This work was supported by funding from SCEC award numbers 15100 (to DHR and DDV), 17184 (to DHR), 16049 (to TKR), and 17024 (to TKR). The authors also acknowledge the financial support from the Australian Government for the Centre for Accelerator Science at the Australian Nuclear Science and Technology Organisation (ANSTO) through the National Collaborative Research Infrastructure Strategy (NCRIS). This work was completed thanks to ANSTO award number 10125 (to DHR). Additional funding was supplied by a Geological Society of London post-graduate research grant (to AH) and a post-graduate research grant from the British Society for Geomorphology (to AH). Finally, we thank Richard Heermance for constructive comments and revisions of this article.
Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/12/15
Y1 - 2018/12/15
N2 - We present surface evidence and displacement rates for a young, active, low-angle (∼20°) reverse thrust fault in close proximity to major population centers in southern California (USA), the Southern San Cayetano fault (SSCF). Active faulting along the northern flank of the Santa Clara River Valley displaces young landforms, such as late Quaternary river terraces and alluvial fans. Geomorphic strain markers are examined using field mapping, high-resolution lidar topographic data, 10Be surface exposure dating, and subsurface well data to provide evidence for a young, active SSCF along the northern flank of the Santa Clara River Valley. Displacement rates for the SSCF are calculated over 103–104 yr timescales with maximum slip rates for the central SSCF of 1.9[Formula presented] mm yr−1 between ∼19–7 ka and minimum slip rates of 1.3[Formula presented] mm yr−1 since ∼7 ka. Uplift rates for the central SSCF have not varied significantly over the last ∼58 ka, with a maximum value of 1.7[Formula presented] mm yr−1 for the interval ∼58–19 ka, and a minimum value of 1.2±0.3 mm yr−1 since ∼7 ka. The SSCF is interpreted as a young, active structure with onset of activity at some time after ∼58 ka. The geometry for the SSCF presented here, with a ∼20° north dip in the subsurface, is the first interpretation of the SSCF based on geological field data. Our new interpretation is significantly different from the previously proposed model-derived geometry, which dips more steeply at 45–60° and intersects the surface in the middle of the Santa Clara River Valley. We suggest that the SSCF may rupture in tandem with the main San Cayetano fault. Additionally, the SSCF could potentially act as a rupture pathway between the Ventura and San Cayetano faults in large-magnitude, multi-fault earthquakes in southern California. However, given structural complexities, including significant changes in dip and varying Holocene displacement rates along strike, further work is required to examine the possible mechanism, likelihood, and frequency of potential through-going ruptures between the Ventura and San Cayetano faults. Confirmation of the SSCF in a previously well-studied area, such as southern California, demonstrates that identification of young faults is critical for accurate seismic hazard assessment. We suggest that many young, active faults remain undetected in other structurally complex and tectonically active regions globally, and that significant seismic hazards can be overlooked.
AB - We present surface evidence and displacement rates for a young, active, low-angle (∼20°) reverse thrust fault in close proximity to major population centers in southern California (USA), the Southern San Cayetano fault (SSCF). Active faulting along the northern flank of the Santa Clara River Valley displaces young landforms, such as late Quaternary river terraces and alluvial fans. Geomorphic strain markers are examined using field mapping, high-resolution lidar topographic data, 10Be surface exposure dating, and subsurface well data to provide evidence for a young, active SSCF along the northern flank of the Santa Clara River Valley. Displacement rates for the SSCF are calculated over 103–104 yr timescales with maximum slip rates for the central SSCF of 1.9[Formula presented] mm yr−1 between ∼19–7 ka and minimum slip rates of 1.3[Formula presented] mm yr−1 since ∼7 ka. Uplift rates for the central SSCF have not varied significantly over the last ∼58 ka, with a maximum value of 1.7[Formula presented] mm yr−1 for the interval ∼58–19 ka, and a minimum value of 1.2±0.3 mm yr−1 since ∼7 ka. The SSCF is interpreted as a young, active structure with onset of activity at some time after ∼58 ka. The geometry for the SSCF presented here, with a ∼20° north dip in the subsurface, is the first interpretation of the SSCF based on geological field data. Our new interpretation is significantly different from the previously proposed model-derived geometry, which dips more steeply at 45–60° and intersects the surface in the middle of the Santa Clara River Valley. We suggest that the SSCF may rupture in tandem with the main San Cayetano fault. Additionally, the SSCF could potentially act as a rupture pathway between the Ventura and San Cayetano faults in large-magnitude, multi-fault earthquakes in southern California. However, given structural complexities, including significant changes in dip and varying Holocene displacement rates along strike, further work is required to examine the possible mechanism, likelihood, and frequency of potential through-going ruptures between the Ventura and San Cayetano faults. Confirmation of the SSCF in a previously well-studied area, such as southern California, demonstrates that identification of young faults is critical for accurate seismic hazard assessment. We suggest that many young, active faults remain undetected in other structurally complex and tectonically active regions globally, and that significant seismic hazards can be overlooked.
KW - beryllium-10
KW - lidar
KW - southern California
KW - surface exposure dating
KW - thrust faults
UR - http://www.scopus.com/inward/record.url?scp=85055126709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055126709&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2018.10.003
DO - 10.1016/j.epsl.2018.10.003
M3 - Article
AN - SCOPUS:85055126709
SN - 0012-821X
VL - 504
SP - 198
EP - 210
JO - Earth and Planetary Sciences Letters
JF - Earth and Planetary Sciences Letters
ER -