Abstract

Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curvature for conducting carriers in the momentum space be finite so as to generate anomalous deflections of the carriers originated from distinct valleys into different directions. We uncover a geometric valley Hall effect (gVHE) in which the valley-contrasting Berry curvature for carriers vanishes completely except for the singular points. The underlying physics is a singular non-π fractional Berry flux located at each conical intersection point in the momentum space, analogous to the classic Aharonov-Bohm effect of a confined magnetic flux in real space. We demonstrate that, associated with gVHE, exceptional skew scattering of valley-contrasting quasiparticles from a valley-independent, scalar type of impurities can generate charge-neutral, transverse valley currents. As a result, the massless nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering resonance, which is electrically controllable. A remarkable phenomenon of significant practical interest is that, associated with gVHE, highly efficient valley filtering can arise. These phenomena are robust against thermal fluctuations and disorders, making them promising for valleytronics applications.

Original languageEnglish (US)
Article number045412
JournalPhysical Review B
Volume96
Issue number4
DOIs
StatePublished - Jul 12 2017

Fingerprint

valleys
Hall effect
curvature
momentum
resonance scattering
intersections
magnetic flux
deflection
disorders
scalars
conduction
impurities
requirements
physics
scattering

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Geometric valley Hall effect and valley filtering through a singular Berry flux. / Xu, Hong Ya; Huang, Liang; Huang, Danhong; Lai, Ying-Cheng.

In: Physical Review B, Vol. 96, No. 4, 045412, 12.07.2017.

Research output: Contribution to journalArticle

Xu, Hong Ya ; Huang, Liang ; Huang, Danhong ; Lai, Ying-Cheng. / Geometric valley Hall effect and valley filtering through a singular Berry flux. In: Physical Review B. 2017 ; Vol. 96, No. 4.
@article{a9e1730a65464734be40cfc11350f82e,
title = "Geometric valley Hall effect and valley filtering through a singular Berry flux",
abstract = "Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curvature for conducting carriers in the momentum space be finite so as to generate anomalous deflections of the carriers originated from distinct valleys into different directions. We uncover a geometric valley Hall effect (gVHE) in which the valley-contrasting Berry curvature for carriers vanishes completely except for the singular points. The underlying physics is a singular non-π fractional Berry flux located at each conical intersection point in the momentum space, analogous to the classic Aharonov-Bohm effect of a confined magnetic flux in real space. We demonstrate that, associated with gVHE, exceptional skew scattering of valley-contrasting quasiparticles from a valley-independent, scalar type of impurities can generate charge-neutral, transverse valley currents. As a result, the massless nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering resonance, which is electrically controllable. A remarkable phenomenon of significant practical interest is that, associated with gVHE, highly efficient valley filtering can arise. These phenomena are robust against thermal fluctuations and disorders, making them promising for valleytronics applications.",
author = "Xu, {Hong Ya} and Liang Huang and Danhong Huang and Ying-Cheng Lai",
year = "2017",
month = "7",
day = "12",
doi = "10.1103/PhysRevB.96.045412",
language = "English (US)",
volume = "96",
journal = "Physical Review B",
issn = "2469-9950",
publisher = "American Physical Society",
number = "4",

}

TY - JOUR

T1 - Geometric valley Hall effect and valley filtering through a singular Berry flux

AU - Xu, Hong Ya

AU - Huang, Liang

AU - Huang, Danhong

AU - Lai, Ying-Cheng

PY - 2017/7/12

Y1 - 2017/7/12

N2 - Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curvature for conducting carriers in the momentum space be finite so as to generate anomalous deflections of the carriers originated from distinct valleys into different directions. We uncover a geometric valley Hall effect (gVHE) in which the valley-contrasting Berry curvature for carriers vanishes completely except for the singular points. The underlying physics is a singular non-π fractional Berry flux located at each conical intersection point in the momentum space, analogous to the classic Aharonov-Bohm effect of a confined magnetic flux in real space. We demonstrate that, associated with gVHE, exceptional skew scattering of valley-contrasting quasiparticles from a valley-independent, scalar type of impurities can generate charge-neutral, transverse valley currents. As a result, the massless nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering resonance, which is electrically controllable. A remarkable phenomenon of significant practical interest is that, associated with gVHE, highly efficient valley filtering can arise. These phenomena are robust against thermal fluctuations and disorders, making them promising for valleytronics applications.

AB - Conventionally, a basic requirement to generate valley Hall effect (VHE) is that the Berry curvature for conducting carriers in the momentum space be finite so as to generate anomalous deflections of the carriers originated from distinct valleys into different directions. We uncover a geometric valley Hall effect (gVHE) in which the valley-contrasting Berry curvature for carriers vanishes completely except for the singular points. The underlying physics is a singular non-π fractional Berry flux located at each conical intersection point in the momentum space, analogous to the classic Aharonov-Bohm effect of a confined magnetic flux in real space. We demonstrate that, associated with gVHE, exceptional skew scattering of valley-contrasting quasiparticles from a valley-independent, scalar type of impurities can generate charge-neutral, transverse valley currents. As a result, the massless nature of the quasiparticles and their high mobility are retained. We further demonstrate that, for the particular Berry flux of π/2, gVHE is considerably enhanced about the skew scattering resonance, which is electrically controllable. A remarkable phenomenon of significant practical interest is that, associated with gVHE, highly efficient valley filtering can arise. These phenomena are robust against thermal fluctuations and disorders, making them promising for valleytronics applications.

UR - http://www.scopus.com/inward/record.url?scp=85026356536&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85026356536&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.96.045412

DO - 10.1103/PhysRevB.96.045412

M3 - Article

AN - SCOPUS:85026356536

VL - 96

JO - Physical Review B

JF - Physical Review B

SN - 2469-9950

IS - 4

M1 - 045412

ER -