Geobacter cytochrome OmcZs binds riboflavin: Implications for extracellular electron transfer

Miyuki A. Thirumurthy, Anne K. Jones

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Geobacter sulfurreducens is an important model organism for understanding extracellular electron transfer (EET), i.e. transfer of electrons from the cell's interior (quinone pool) to an extracellular substrate. This exoelectrogenic functionality can be exploited in bioelectrochemical applications. Nonetheless, key questions remain regarding the mechanisms of this functionality. G. sulfurreducens has been hypothesized to employ both multi-heme cytochromes and soluble, small molecule redox shuttles, as the final, redox-active species in EET. However, interactions between flavin redox shuttles and outer membrane, redox proteins in Geobacter have not been demonstrated. Herein, the heterologous expression and purification from E. coli of a soluble form of the multi-heme cytochrome OmcZs from G. sulfurreducens is reported. UV-vis absorption assays show that riboflavin can be reduced by OmcZs with concomitant oxidation of the protein. Fluorescence assays show that oxidized OmcZs and riboflavin interact with a binding constant of 34 μM. Furthermore, expression of OmcZs in E. coli enables EET in the host, and the current produced by these E. coli in a bioelectrochemical cell increases when riboflavin is introduced. These results support the hypothesis that OmcZs functions in EET by transiently binding riboflavin, which shuttles electrons from the outer membrane to the extracellular substrate.

Original languageEnglish (US)
Article number124001
Issue number12
StatePublished - Jan 8 2020


  • Geobacter
  • OmcZ
  • extracellular electron transfer

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Geobacter cytochrome OmcZs binds riboflavin: Implications for extracellular electron transfer'. Together they form a unique fingerprint.

Cite this