Abstract
Background: Over the past two decades, genomics has evolved as a scientific research discipline. Genomics research was fueled initially by government and nonprofit funding sources, later augmented by private research and development (R&D) funding. Citizens and taxpayers of many countries have funded much of the research, and have expectations about access to the resulting information and knowledge. While access to knowledge gained from all publicly funded research is desired, access is especially important for fields that have broad social impact and stimulate public dialogue. Genomics is one such field, where public concerns are raised for reasons such as health care and insurance implications, as well as personal and ancestral identification. Thus, genomics has grown rapidly as a field, and attracts considerable interest. Results: One way to study the growth of a field of research is to examine its funding. This study focuses on public funding of genomics research, identifying and collecting data from major government and nonprofit organizations around the world, and updating previous estimates of world genomics research funding, including information about geographical origins. We initially identified 89 publicly funded organizations; we requested information about each organization's funding of genomics research. Of these organizations, 48 responded and 34 reported genomics research expenditures (of those that responded but did not supply information, some did not fund such research, others could not quantify it). The figures reported here include all the largest funders and we estimate that we have accounted for most of the genomics research funding from government and nonprofit sources. Conclusion: Aggregate spending on genomics research from 34 funding sources averaged around $2.9 billion in 2003-2006. The United States spent more than any other country on genomics research, corresponding to 35% of the overall worldwide public funding (compared to 49% US share of public health research funding for all purposes). When adjusted to genomics funding intensity, however, the United States dropped below Ireland, the United Kingdom, and Canada, as measured both by genomics research expenditure per capita and per Gross Domestic Product.
Original language | English (US) |
---|---|
Article number | 472 |
Journal | BMC Genomics |
Volume | 9 |
DOIs | |
State | Published - Oct 10 2008 |
Externally published | Yes |
ASJC Scopus subject areas
- Biotechnology
- Genetics
Fingerprint
Dive into the research topics of 'Genomics research: World survey of public funding'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: BMC Genomics, Vol. 9, 472, 10.10.2008.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Genomics research
T2 - World survey of public funding
AU - Pohlhaus, Jennifer Reineke
AU - Cook-Deegan, Robert M.
N1 - Funding Information: The government agency responsible for supporting basic and applied research in South Africa is the National Research Foundation [74], while most government funding for health research is funded through the Medical Research Council [75]. The amount of genomics research funded by South Africa was US$2.2 – 3.0 million for both of these government funders (2003 – 2006; Table 4); the Centre for Research on Science & Technology did not respond to our survey. Funding Information: The amount of genomics research funded by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), in thousands of US$, where FY = fiscal year. c NCI values for fiscal years 2006 and 2007 were 7.02% and 10.17% of genetics funding, respectively (Personal Communication, Weston Ricks, July 2008). We estimated the values for fiscal years 2003 – 2005 by multiplying the genetics funding values for each year by the average ratio of genomics:genetics funding for fiscal years 2006 – 2007. d We determined NHGRI values as the total NHGRI funding appropriation minus Roadmap Transfer and Research Management & Support [[29]; see text]. Funding Information: As described by the World Health Organization, genomics research is beginning to occur in developing countries and regions such as Brazil, China, India, and the Asia-Pacific Region [77]. We contacted organizations in Argentina (Agencia Nacional de Promocion Cientifica y Tecnolog-ica, and Consejo Nacional de Investigationes Cientificas y Tecnicas), India (Ministry of Science and Technology Division of Science and Technology), and Russia (Engle-hardt Institute of Molecular Biology Russian Genome Project), as well as the Asian Technology Information Program (ATIP) (see Additional File) about their funding of genomics research, but we received no response other than an initial response from the ATIP before communication ceased. The difficulty we encountered in acquiring an estimate of genomics research expenditures in China is described above. It will take further work and detailed case studies to develop a complete report of genomics research expenditures that are occurring in middle-income countries and developing regions. One such case study is in progress for Brazil, where public funders include the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvi-mento Cientifico e Tecnológico), and the State of São Paolo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo; FAPESP); preliminary data indicates that FAPESP funded about US$56 million (unadjusted for inflation) of genomics research from 1997 – 2007 [78]. Funding Information: China (Ministry of Science and Technology, National Natural Science Foundation of China, and Chinese Academy of Sciences)J Funding Information: Genoma España is the Foundation for the Development of Genomic and Proteomic Research, and is backed by the Spanish State through the Ministry of Health and Consumer Affairs (Ministerio de Sanidad y Consumo), and the Ministry of Education and Science (Ministerio de Edu-cacion y Ciencia) [68]. Genoma España is one of four main funding centers in biotechnology, along with the Center for Development of Industrial Technology (Centro para el Desarollo Tecnologio Industrial) in the Ministry of Industry, Trade and Tourism (Ministerio de Industria, Tur- ismo y Comercio), the Instituto de Salud Carlos III in the Ministry of Health and Consumer Affairs, and the Ministry of Education and Science [69]. Although Spain is a low-ranked by all measures (Tables 4, 5, and 6), it has recently developed new government programs to increase total R&D from 1.25% of GDP to 2% of GDP by 2010 [69-71], indicating that Spain's overall investment in genomics research is likely to increase. Funding Information: To facilitate its input, the public needs access to data, benchmarks, and indicators of current research funding, past funding trends, future projections, and comparisons with funding organizations around the world. Several organizations study and publish such data and benchmarks for general R&D funding or health funding, including the R&D Budget and Policy Program of the American Association for the Advancement of Science (AAAS) [19], the Division of Science Resources Statistics at the National Science Foundation (NSF) [20] and its National Science Board's Science and Engineering Indicators [21], the Statistics Portal of the Organization for Economic Cooperation and Development (OECD) [22] and the Global Forum on Health Research [23]. While the authors of "Monitoring Financial Flows in Health Research" characterize their estimates as "very rough," they remain the best statistics available on global heath research [24]. Occasional studies have included reporting on genomics research, including the 2004 "Financial Flows" report [see Highlight 2.1 (page 27) in [25]], which cited a previous survey (in 2000) that our current survey builds upon. There has been no update specific to genomics since 2000 [26], however, so we undertook this "world survey" to update and expand that survey. We report the allocation of public funds that countries and organizations in the public sector (governments, nonprofit organizations, and international organizations) provide for genomics research. This survey of public sector funding provides patterns and trends of worldwide genomics funding, allowing for initial comparisons across organizations and countries, and complements an effort to estimate genomics expenditures by private companies [27]. Funding Information: Although the NIH funded US$4.2 – 4.9 billion of genetics research (about 16 – 17% of the total NIH budget, and the sixth or seventh most funded research area of 210 categories, [28]) we note missing data from four grant-issuing Institutes and Centers (National Center on Complementary and Alternative Medicine, National Institute of Allergy and Infectious Diseases, National Institute of Diabetes and Digestive and Kidney Disorders, and National Library of Medicine; Table 2). A simple query of CRISP (Computer Retrieval of Information on Scientific Projects), a searchable database of biomedical research projects funded by the NIH and other Department of Health and Human Services (DHHS) components, reveals that each of these NIH components does fund genetics Funding Information: Spending on genomics research in the United Kingdom decreased slightly in 2006, after a steady increase from 2003 to 2005 (Table 4). The United Kingdom was the second highest funder of genomics research per capita and per GDP (Tables 5 and 6); both measures of genomics "intensity" declined in 2006 (Figures 2 and 3). The three United Kingdom public funders in this survey are Cancer Research UK, the Wellcome Trust, and the Biotechnology and Biological Sciences Research Council (BBSRC), each of which allocated at least 10% of its research monies for genomics. An analysis of the annual reports of the BBSRC shows that 35 – 40% of the total research funded (through responsive research grants, core strategic grants, and research initiatives) was genomics [50,51]. Similarly, the Wellcome Trust reported spending 29 – 38% of its grant expenditures on genomics research [52,53]. Finally, the genomics research funded by Cancer Research UK was estimated at 10% of its charitable expenses (Personal Communication, Lynne Davies, January 2007). Funding Information: The 34 organizations in the survey account for 13 countries directly, as well as indirectly including another 28 countries that are eligible for full funding by the European Commission (27 member states of the European Union plus Iceland, Norway, Liechtenstein, Switzerland, Israel, and Turkey; Personal Communication, Indridi Benediktt-son, September 2006). Only five of the thirty-three countries fully eligible for European Commission funding are directly represented in this world survey (the United Kingdom, the Netherlands, Germany, Ireland, and Spain). Of note, funds from the European Commission cover about 50% of the costs of the funded projects; the remaining costs are covered by each institution that receives funding (Personal Communication, Indridi Benedikttson, September 2006), which are included in Table 1 as European Commission matching funds. Funding Information: AAAS: American Association for the Advancement of Science; ATIP: Asian Technology Information Program; BBSRC: Biotechnology and Biological Sciences Research Council (United Kingdom); BMBF: Budesministerium fuer Bildung und Forschung (Germany); CAS: Chinese Academy of Sciences; CBS: Canadian Biotechnology Strategy; CDC: Centers for Disease Control and Prevention (United States); CDMRP: Congressionally Directed Medical Research Program (United States); DARPA: Defense Advanced Research Projects Agency (United States); DFG: Deutsche Forschungsgemeinschaft (Germany); DHHS: Department of Health & Human Services (United States); DHS: Department of Homeland Security (United States); DNA: Deoxyribonucleic Acid; DOD: Department of Defense (United States); DOE: Department of Energy (United States); FAPESP: Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil); FRST: Foundation for Research in Science and Technology (New Zealand); FY: Fiscal Year; GDP: Gross Domestic Product; HHMI: Howard Hughes Medical Institute (United States); IMF: International Monetary Fund; MAFF: Ministry of Agricul- ture: Forestry and Fisheries (Japan); METI: Ministry of Economy, Trade and Industry (Japan); MEXT: Ministry of Education, Culture, Sports, Science and Technology (Japan); MHLW: Ministry of Health, Labour and Welfare (Japan); MOST: Ministry of Science and Technology (Japan); NASA: National Aeronautics and Space Administration (United States); NCI: National Cancer Institute (United States); NGFN: National Genome Research Network (Germany); NGI: Netherlands Genomics Initiative; NHGRI: National Human Genome Research Institute (United States); NHMRC: National Health and Medical Research Council (Australia); NIH: National Institutes of Health (United States); NIST: National Institute of Standards and Technology (United States); NOAA: National Oceanic and Atmospheric Administration (United States); NRC: National Research Council (Canada); NSERC: Natural Sciences and Engineering Research Council (Canada); NSF: National Science Foundation (United States); NSFC: National Natural Science Foundation of China; NOW: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands); OECD: Organization for Economic Cooperation and Development; PPP: Purchasing Power Parities; R&D: Research & Development; TIGR: The Institute for Genome Research (United States); UK: United Kingdom; US: United States; USDA: United States Department of Agriculture. Funding Information: Four Canadian organizations are included in this survey: Genome Canada, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the National Research Council (NRC) and the Canadian Biotechnology Strategy (CBS). The CBS includes six departments and agencies that are building capacity for new research (Agriculture and Agri-Food Canada, Department of Fisheries & Oceans, Department of Natural Resources Canada, Environment Canada, Health Canada, and National Research Council (NRC) [55]), although the contribution from NRC (Canadian $6 million per year) was reduced to avoid double-counting of NRC-funded genomics research (Personal Communication, Gary Fudge, October 2007). Other public funders of genomics research include the Canadian Institutes of Health Research (formerly the Medical Research Council), the Canada Foundation for Innovation, and the Social Sciences and Humanities Research Council, none of these responded to the survey. Funding Information: The amount of genetics research funded by NIH components (24 grant-issuing Institutes and Centers, the Office of the Director, and the Roadmap) is indicated in thousands of US$; Fiscal year 2006 is an estimate, and fiscal year 2007 is the President's budget. The values in this table were provided by the NIH Office of Budget (Personal Communication, Arlette Howard, May 2006). a NCI actual genetics funding for fiscal years 2006 and 2007 was $1,530,200 and $1,523,628, respectively, in thousands (Personal Communication, Weston Ricks, July 2008). b Total NIH Genetics funding (actual) for fiscal years 2006 and 2007 was $4,878,000 each year, in thousands [28]. Funding Information: To estimate the completeness of the United States spending on genomics research reported here, we determined the percentage of federal and nonprofit funding on R&D that is covered by the entities in this survey. Of the US$1,023 – 1,064 million per year in federally funded research and development in all disciplines (2003 – 2006), six of the entities included in this survey (DOD, DOE, NIH, NSF, USDA, and DHS) accounted for 84 – 86% [46]. Although we were unable to determine the percentage of total research and development funds provided by the nonprofits listed in our survey, the overall contribution of nonprofits towards total research and development funding in the US was 3% in 2004 [47]. Combined, these two data indicate that there are unlikely to be major public funders in the United States that are not addressed in this survey, and that the survey accounts for a large majority of total genomics government and nonprofit expenditures in the United States. The remaining public funds for genomics research are likely to be attributable to the government and nonprofit funders identified in this survey that did not supply data, such as the four NIH Institutes and Centers named above, the National Aeronautics and Space Administration (NASA) Ames Center, National Institutes of Standards and Technology (NIST), National Oceanic and Atmostpheric Administration (NOAA), the J. Funding Information: The Department of Energy (DOE) Office of Biological and Environmental Research funded genomics research in the Life Sciences funding category under the subcategories of Microbial Genomics, Genomics: GTL [Genomes To Life program], Human Genome, and Functional Genomics/ Health Effects [33-36]. The NSF Biological Sciences Directorate funded genomics research under the following three programs: Microbial Genome Sequencing Program, the Plant Genome Project, and the 2010 Project (Personal Communication, Vernon Ross, April 2007). Funding Information: In South Korea, which accounted for 2% of total genomics research funding in 2006 (Figure 1), the Ministry of Science and Technology (MOST) is the central agency for national science and technology development, including support for basic and applied research and development supported by the government [65], making it likely that the values reported here represent nearly all of the country's genomic research funding. Although South Korea's funding for genomics research has been increasing steadily since 2004, the incoming president has pledged to eliminate four government ministries, possibly merging the MOST with the Ministry of Education, which may weaken it [66].
PY - 2008/10/10
Y1 - 2008/10/10
N2 - Background: Over the past two decades, genomics has evolved as a scientific research discipline. Genomics research was fueled initially by government and nonprofit funding sources, later augmented by private research and development (R&D) funding. Citizens and taxpayers of many countries have funded much of the research, and have expectations about access to the resulting information and knowledge. While access to knowledge gained from all publicly funded research is desired, access is especially important for fields that have broad social impact and stimulate public dialogue. Genomics is one such field, where public concerns are raised for reasons such as health care and insurance implications, as well as personal and ancestral identification. Thus, genomics has grown rapidly as a field, and attracts considerable interest. Results: One way to study the growth of a field of research is to examine its funding. This study focuses on public funding of genomics research, identifying and collecting data from major government and nonprofit organizations around the world, and updating previous estimates of world genomics research funding, including information about geographical origins. We initially identified 89 publicly funded organizations; we requested information about each organization's funding of genomics research. Of these organizations, 48 responded and 34 reported genomics research expenditures (of those that responded but did not supply information, some did not fund such research, others could not quantify it). The figures reported here include all the largest funders and we estimate that we have accounted for most of the genomics research funding from government and nonprofit sources. Conclusion: Aggregate spending on genomics research from 34 funding sources averaged around $2.9 billion in 2003-2006. The United States spent more than any other country on genomics research, corresponding to 35% of the overall worldwide public funding (compared to 49% US share of public health research funding for all purposes). When adjusted to genomics funding intensity, however, the United States dropped below Ireland, the United Kingdom, and Canada, as measured both by genomics research expenditure per capita and per Gross Domestic Product.
AB - Background: Over the past two decades, genomics has evolved as a scientific research discipline. Genomics research was fueled initially by government and nonprofit funding sources, later augmented by private research and development (R&D) funding. Citizens and taxpayers of many countries have funded much of the research, and have expectations about access to the resulting information and knowledge. While access to knowledge gained from all publicly funded research is desired, access is especially important for fields that have broad social impact and stimulate public dialogue. Genomics is one such field, where public concerns are raised for reasons such as health care and insurance implications, as well as personal and ancestral identification. Thus, genomics has grown rapidly as a field, and attracts considerable interest. Results: One way to study the growth of a field of research is to examine its funding. This study focuses on public funding of genomics research, identifying and collecting data from major government and nonprofit organizations around the world, and updating previous estimates of world genomics research funding, including information about geographical origins. We initially identified 89 publicly funded organizations; we requested information about each organization's funding of genomics research. Of these organizations, 48 responded and 34 reported genomics research expenditures (of those that responded but did not supply information, some did not fund such research, others could not quantify it). The figures reported here include all the largest funders and we estimate that we have accounted for most of the genomics research funding from government and nonprofit sources. Conclusion: Aggregate spending on genomics research from 34 funding sources averaged around $2.9 billion in 2003-2006. The United States spent more than any other country on genomics research, corresponding to 35% of the overall worldwide public funding (compared to 49% US share of public health research funding for all purposes). When adjusted to genomics funding intensity, however, the United States dropped below Ireland, the United Kingdom, and Canada, as measured both by genomics research expenditure per capita and per Gross Domestic Product.
UR - http://www.scopus.com/inward/record.url?scp=55249092701&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55249092701&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-9-472
DO - 10.1186/1471-2164-9-472
M3 - Article
C2 - 18847466
AN - SCOPUS:55249092701
SN - 1471-2164
VL - 9
JO - BMC Genomics
JF - BMC Genomics
M1 - 472
ER -