Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene

Defeng Xing, Nanqi Ren, Bruce Rittmann

Research output: Contribution to journalArticle

89 Citations (Scopus)

Abstract

Hydrogen gas (H2) produced by bacterial fermentation of biomass can be a sustainable energy source. The ability to produce H2 gas during anaerobic fermentation was previously thought to be restricted to a few species within the genera Clostridium and Enterobacter. This work reports genomic evidence for the presence of novel H2-producing bacteria (HPB) in acidophilic ethanol-H2-coproducing communities that were enriched using molasses wastewater. The majority of the enriched dominant populations in the acidophilic ethanol-H2-coproducing system were affiliated with low-G+C-content gram-positive bacteria, Bacteroidetes, and Actinobacteria, based on the 16S rRNA gene. However, PCR primers designed to specifically target bacterial hydA yielded 17 unique hydA sequences whose amino acid sequences differed from those of known HPB. The putative ethanol-H 2-coproducing bacteria comprised 11 novel phylotypes closely related to Ethanoligenens harbinense, Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Furthermore, analysis of the alcohol dehydrogenase isoenzyme also pointed to an E. harbinense-like organism, which is known to have a high conversion rate of carbohydrate to H2 and ethanol. We also found six novel HPB that were associated with lactate-, propionate-, and butyrate-oxidizing bacteria in the acidophilic H2-producing sludge. Thus, the microbial ecology of mesophilic and acidophilic H2 fermentation involves many other bacteria in addition to Clostridium and Enterobacter.

Original languageEnglish (US)
Pages (from-to)1232-1239
Number of pages8
JournalApplied and Environmental Microbiology
Volume74
Issue number4
DOIs
StatePublished - Feb 2008

Fingerprint

hydrogen
Hydrogen
ethanol
Ethanol
Bacteria
genetic variation
bacterium
Clostridium
gene
bacteria
Genes
Fermentation
Enterobacter
genes
fermentation
Clostridium saccharoperbutylacetonicum
Gases
Clostridium thermocellum
gases
Renewable Energy

ASJC Scopus subject areas

  • Environmental Science(all)
  • Biotechnology
  • Microbiology

Cite this

@article{a971072fd5a54cb0a469c8388adad5e4,
title = "Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene",
abstract = "Hydrogen gas (H2) produced by bacterial fermentation of biomass can be a sustainable energy source. The ability to produce H2 gas during anaerobic fermentation was previously thought to be restricted to a few species within the genera Clostridium and Enterobacter. This work reports genomic evidence for the presence of novel H2-producing bacteria (HPB) in acidophilic ethanol-H2-coproducing communities that were enriched using molasses wastewater. The majority of the enriched dominant populations in the acidophilic ethanol-H2-coproducing system were affiliated with low-G+C-content gram-positive bacteria, Bacteroidetes, and Actinobacteria, based on the 16S rRNA gene. However, PCR primers designed to specifically target bacterial hydA yielded 17 unique hydA sequences whose amino acid sequences differed from those of known HPB. The putative ethanol-H 2-coproducing bacteria comprised 11 novel phylotypes closely related to Ethanoligenens harbinense, Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Furthermore, analysis of the alcohol dehydrogenase isoenzyme also pointed to an E. harbinense-like organism, which is known to have a high conversion rate of carbohydrate to H2 and ethanol. We also found six novel HPB that were associated with lactate-, propionate-, and butyrate-oxidizing bacteria in the acidophilic H2-producing sludge. Thus, the microbial ecology of mesophilic and acidophilic H2 fermentation involves many other bacteria in addition to Clostridium and Enterobacter.",
author = "Defeng Xing and Nanqi Ren and Bruce Rittmann",
year = "2008",
month = "2",
doi = "10.1128/AEM.01946-07",
language = "English (US)",
volume = "74",
pages = "1232--1239",
journal = "Applied and Environmental Microbiology",
issn = "0099-2240",
publisher = "American Society for Microbiology",
number = "4",

}

TY - JOUR

T1 - Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing system, analyzed using the [Fe]-hydrogenase gene

AU - Xing, Defeng

AU - Ren, Nanqi

AU - Rittmann, Bruce

PY - 2008/2

Y1 - 2008/2

N2 - Hydrogen gas (H2) produced by bacterial fermentation of biomass can be a sustainable energy source. The ability to produce H2 gas during anaerobic fermentation was previously thought to be restricted to a few species within the genera Clostridium and Enterobacter. This work reports genomic evidence for the presence of novel H2-producing bacteria (HPB) in acidophilic ethanol-H2-coproducing communities that were enriched using molasses wastewater. The majority of the enriched dominant populations in the acidophilic ethanol-H2-coproducing system were affiliated with low-G+C-content gram-positive bacteria, Bacteroidetes, and Actinobacteria, based on the 16S rRNA gene. However, PCR primers designed to specifically target bacterial hydA yielded 17 unique hydA sequences whose amino acid sequences differed from those of known HPB. The putative ethanol-H 2-coproducing bacteria comprised 11 novel phylotypes closely related to Ethanoligenens harbinense, Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Furthermore, analysis of the alcohol dehydrogenase isoenzyme also pointed to an E. harbinense-like organism, which is known to have a high conversion rate of carbohydrate to H2 and ethanol. We also found six novel HPB that were associated with lactate-, propionate-, and butyrate-oxidizing bacteria in the acidophilic H2-producing sludge. Thus, the microbial ecology of mesophilic and acidophilic H2 fermentation involves many other bacteria in addition to Clostridium and Enterobacter.

AB - Hydrogen gas (H2) produced by bacterial fermentation of biomass can be a sustainable energy source. The ability to produce H2 gas during anaerobic fermentation was previously thought to be restricted to a few species within the genera Clostridium and Enterobacter. This work reports genomic evidence for the presence of novel H2-producing bacteria (HPB) in acidophilic ethanol-H2-coproducing communities that were enriched using molasses wastewater. The majority of the enriched dominant populations in the acidophilic ethanol-H2-coproducing system were affiliated with low-G+C-content gram-positive bacteria, Bacteroidetes, and Actinobacteria, based on the 16S rRNA gene. However, PCR primers designed to specifically target bacterial hydA yielded 17 unique hydA sequences whose amino acid sequences differed from those of known HPB. The putative ethanol-H 2-coproducing bacteria comprised 11 novel phylotypes closely related to Ethanoligenens harbinense, Clostridium thermocellum, and Clostridium saccharoperbutylacetonicum. Furthermore, analysis of the alcohol dehydrogenase isoenzyme also pointed to an E. harbinense-like organism, which is known to have a high conversion rate of carbohydrate to H2 and ethanol. We also found six novel HPB that were associated with lactate-, propionate-, and butyrate-oxidizing bacteria in the acidophilic H2-producing sludge. Thus, the microbial ecology of mesophilic and acidophilic H2 fermentation involves many other bacteria in addition to Clostridium and Enterobacter.

UR - http://www.scopus.com/inward/record.url?scp=39649083358&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=39649083358&partnerID=8YFLogxK

U2 - 10.1128/AEM.01946-07

DO - 10.1128/AEM.01946-07

M3 - Article

C2 - 18156331

AN - SCOPUS:39649083358

VL - 74

SP - 1232

EP - 1239

JO - Applied and Environmental Microbiology

JF - Applied and Environmental Microbiology

SN - 0099-2240

IS - 4

ER -