Generic behavior of master-stability functions in coupled nonlinear dynamical systems

Liang Huang, Qingfei Chen, Ying-Cheng Lai, Louis M. Pecora

Research output: Contribution to journalArticlepeer-review

166 Scopus citations

Abstract

Master-stability functions (MSFs) are fundamental to the study of synchronization in complex dynamical systems. For example, for a coupled oscillator network, a necessary condition for synchronization to occur is that the MSF at the corresponding normalized coupling parameters be negative. To understand the typical behaviors of the MSF for various chaotic oscillators is key to predicting the collective dynamics of a network of these oscillators. We address this issue by examining, systematically, MSFs for known chaotic oscillators. Our computations and analysis indicate that it is generic for MSFs being negative in a finite interval of a normalized coupling parameter. A general scheme is proposed to classify the typical behaviors of MSFs into four categories. These results are verified by direct simulations of synchronous dynamics on networks of actual coupled oscillators.

Original languageEnglish (US)
Article number036204
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume80
Issue number3
DOIs
StatePublished - Sep 15 2009

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Generic behavior of master-stability functions in coupled nonlinear dynamical systems'. Together they form a unique fingerprint.

Cite this