33 Scopus citations

Abstract

Graph matching has received persistent attention over several decades, which can be formulated as a quadratic assignment problem (QAP). We show that a large family of functions, which we define as Separable Functions, can approximate discrete graph matching in the continuous domain asymptotically by varying the approximation controlling parameters. We also study the properties of global optimality and devise convex/concave-preserving extensions to the widely used Lawler's QAP form. Our theoretical findings show the potential for deriving new algorithms and techniques for graph matching. We deliver solvers based on two specific instances of Separable Functions, and the state-of-the-art performance of our method is verified on popular benchmarks.

Original languageEnglish (US)
Pages (from-to)853-863
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - 2018
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: Dec 2 2018Dec 8 2018

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Cite this