Generalization bounds for domain adaptation

Chao Zhang, Lei Zhang, Jieping Ye

Research output: Chapter in Book/Report/Conference proceedingConference contribution

42 Scopus citations

Abstract

In this paper, we provide a new framework to study the generalization bound of the learning process for domain adaptation. We consider two kinds of representative domain adaptation settings: one is domain adaptation with multiple sources and the other is domain adaptation combining source and target data. In particular, we use the integral probability metric to measure the difference between two domains. Then, we develop the specific Hoeffding-type deviation inequality and symmetrization inequality for either kind of domain adaptation to achieve the corresponding generalization bound based on the uniform entropy number. By using the resultant generalization bound, we analyze the asymptotic convergence and the rate of convergence of the learning process for domain adaptation. Meanwhile, we discuss the factors that affect the asymptotic behavior of the learning process. The numerical experiments support our results.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages3320-3328
Number of pages9
StatePublished - 2012
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: Dec 3 2012Dec 6 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume4
ISSN (Print)1049-5258

Other

Other26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Country/TerritoryUnited States
CityLake Tahoe, NV
Period12/3/1212/6/12

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Generalization bounds for domain adaptation'. Together they form a unique fingerprint.

Cite this