Gene-culture coevolution in the age of genomics

Peter J. Richerson, Robert Boyd, Joseph Henrich

Research output: Chapter in Book/Report/Conference proceedingChapter

3 Scopus citations

Abstract

The use of socially learned information (culture) is central to human adaptations. We investigate the hypothesis that the process of cultural evolution has played an active, leading role in the evolution of genes. Culture normally evolves more rapidly than genes, creating novel environments that expose genes to new selective pressures. Many human genes that have been shown to be under recent or current selection are changing as a result of new environments created by cultural innovations. Some changed in response to the development of agricultural subsistence systems in the Early and Middle Holocene, including alleles coding for adaptations to diets rich in plant starch (e.g., amylase copy number) and for adaptations to epidemic diseases that evolved as human populations expanded (e.g., sickle cell and G6PD deficiency alleles that provide protection against malaria). Large-scale scans using patterns of linkage disequilibrium to detect recent selection suggest that many more genes evolved in response to agriculture. Genetic change in response to the novel social environment of contemporary modern societies is also likely to be occurring. The functional effects of most of the alleles under selection during the last 10,000 years are currently unknown. Also unknown is the role of paleoenvironmental change in regulating the tempo of hominin evolution. Although the full extent of culture-driven gene-culture coevolution is thus far unknown for the deeper history of the human lineage, theory and some evidence suggest that such effects were profound. Genomic methods promise to have a major impact on our understanding of gene-culture coevolution over the span of hominin evolutionary history.

Original languageEnglish (US)
Title of host publicationThe Human Condition
PublisherNational Academies Press
Pages231-255
Number of pages25
Volume4
ISBN (Print)030910405X, 9780309156578
DOIs
StatePublished - Dec 30 2010
Externally publishedYes

ASJC Scopus subject areas

  • General Agricultural and Biological Sciences
  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Gene-culture coevolution in the age of genomics'. Together they form a unique fingerprint.

Cite this