Abstract
We report on an study of the GaP/Si interface for application in silicon heterojunction solar cells. We analyzed the band alignment using X-ray photoelectron spectroscopy (XPS) and cross-sectional Kelvin probe force microscopy (x-KPFM). Our measurements show a high conduction band offset (0.9 eV) leading to a barrier in electron extraction which we microscopically resolved via x-KPFM. XPS reveals the presence of Si-Ga bonds which explains the observed interface dipole that leads to low open circuit voltage and low fill factor in GaP/Si heterojunction solar cells. Furthermore, we investigated the electronic and morphologic changes in GaP upon Si and Mg doping.
Original language | English (US) |
---|---|
Title of host publication | 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2064-2069 |
Number of pages | 6 |
ISBN (Electronic) | 9781538685297 |
DOIs | |
State | Published - Nov 26 2018 |
Event | 7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - Waikoloa Village, United States Duration: Jun 10 2018 → Jun 15 2018 |
Other
Other | 7th IEEE World Conference on Photovoltaic Energy Conversion, WCPEC 2018 |
---|---|
Country | United States |
City | Waikoloa Village |
Period | 6/10/18 → 6/15/18 |
Keywords
- band alignment
- doping
- Gallium Phosphide
- morphology
- Silicon heterojunction
ASJC Scopus subject areas
- Energy Engineering and Power Technology
- Renewable Energy, Sustainability and the Environment
- Electrical and Electronic Engineering
- Electronic, Optical and Magnetic Materials