Galam's bottom-up hierarchical system and public debate model revisited

Nicolas Lanchier, N. Taylor

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This paper is concerned with the bottom-up hierarchical system and public debate model proposed by Galam (2008), as well as a spatial version of the public debate model. In all three models, there is a population of individuals who are characterized by one of two competing opinions, say opinion -1 and opinion +1. This population is further divided into groups of common size s. In the bottom-up hierarchical system, each group elects a representative candidate, whereas in the other two models, all the members of each group discuss at random times until they reach a consensus. At each election/discussion, the winning opinion is chosen according to Galam's majority rule: the opinion with the majority of representatives wins when there is a strict majority, while one opinion, say opinion -1, is chosen by default in the case of a tie. For the public debate models we also consider the following natural updating rule that we call proportional rule: the winning opinion is chosen at random with a probability equal to the fraction of its supporters in the group. The three models differ in term of their population structure: in the bottomup hierarchical system, individuals are located on a finite regular tree, in the nonspatial public debate model, they are located on a complete graph, and in the spatial public debate model, they are located on the d-dimensional regular lattice. For the bottom-up hierarchical system and nonspatial public debate model, Galam studied the probability that a given opinion wins under the majority rule and, assuming that individuals' opinions are initially independent, making the initial number of supporters of a given opinion a binomial random variable. The first objective of this paper is to revisit Galam's result, assuming that the initial number of individuals in favor of a given opinion is a fixed deterministic number. Our analysis reveals phase transitions that are sharper under our assumption than under Galam's assumption, particularly with small population size. The second objective is to determine whether both opinions can coexist at equilibrium for the spatial public debate model under the proportional rule, which depends on the spatial dimension.

Original languageEnglish (US)
Pages (from-to)668-692
Number of pages25
JournalAdvances in Applied Probability
Volume47
Issue number3
StatePublished - Sep 1 2015

Fingerprint

Hierarchical systems
Hierarchical Systems
Bottom-up
Majority Rule
Model
Directly proportional
Population Structure
Elections
Tie
Population Size
Random variables
Complete Graph
Updating
Phase Transition
Random variable
Phase transitions

Keywords

  • Interacting particle system
  • Martingale
  • Public debate
  • Voting system

ASJC Scopus subject areas

  • Applied Mathematics
  • Statistics and Probability

Cite this

Galam's bottom-up hierarchical system and public debate model revisited. / Lanchier, Nicolas; Taylor, N.

In: Advances in Applied Probability, Vol. 47, No. 3, 01.09.2015, p. 668-692.

Research output: Contribution to journalArticle

@article{e0dde3fb3e0d48018cb7c41873f96728,
title = "Galam's bottom-up hierarchical system and public debate model revisited",
abstract = "This paper is concerned with the bottom-up hierarchical system and public debate model proposed by Galam (2008), as well as a spatial version of the public debate model. In all three models, there is a population of individuals who are characterized by one of two competing opinions, say opinion -1 and opinion +1. This population is further divided into groups of common size s. In the bottom-up hierarchical system, each group elects a representative candidate, whereas in the other two models, all the members of each group discuss at random times until they reach a consensus. At each election/discussion, the winning opinion is chosen according to Galam's majority rule: the opinion with the majority of representatives wins when there is a strict majority, while one opinion, say opinion -1, is chosen by default in the case of a tie. For the public debate models we also consider the following natural updating rule that we call proportional rule: the winning opinion is chosen at random with a probability equal to the fraction of its supporters in the group. The three models differ in term of their population structure: in the bottomup hierarchical system, individuals are located on a finite regular tree, in the nonspatial public debate model, they are located on a complete graph, and in the spatial public debate model, they are located on the d-dimensional regular lattice. For the bottom-up hierarchical system and nonspatial public debate model, Galam studied the probability that a given opinion wins under the majority rule and, assuming that individuals' opinions are initially independent, making the initial number of supporters of a given opinion a binomial random variable. The first objective of this paper is to revisit Galam's result, assuming that the initial number of individuals in favor of a given opinion is a fixed deterministic number. Our analysis reveals phase transitions that are sharper under our assumption than under Galam's assumption, particularly with small population size. The second objective is to determine whether both opinions can coexist at equilibrium for the spatial public debate model under the proportional rule, which depends on the spatial dimension.",
keywords = "Interacting particle system, Martingale, Public debate, Voting system",
author = "Nicolas Lanchier and N. Taylor",
year = "2015",
month = "9",
day = "1",
language = "English (US)",
volume = "47",
pages = "668--692",
journal = "Advances in Applied Probability",
issn = "0001-8678",
publisher = "University of Sheffield",
number = "3",

}

TY - JOUR

T1 - Galam's bottom-up hierarchical system and public debate model revisited

AU - Lanchier, Nicolas

AU - Taylor, N.

PY - 2015/9/1

Y1 - 2015/9/1

N2 - This paper is concerned with the bottom-up hierarchical system and public debate model proposed by Galam (2008), as well as a spatial version of the public debate model. In all three models, there is a population of individuals who are characterized by one of two competing opinions, say opinion -1 and opinion +1. This population is further divided into groups of common size s. In the bottom-up hierarchical system, each group elects a representative candidate, whereas in the other two models, all the members of each group discuss at random times until they reach a consensus. At each election/discussion, the winning opinion is chosen according to Galam's majority rule: the opinion with the majority of representatives wins when there is a strict majority, while one opinion, say opinion -1, is chosen by default in the case of a tie. For the public debate models we also consider the following natural updating rule that we call proportional rule: the winning opinion is chosen at random with a probability equal to the fraction of its supporters in the group. The three models differ in term of their population structure: in the bottomup hierarchical system, individuals are located on a finite regular tree, in the nonspatial public debate model, they are located on a complete graph, and in the spatial public debate model, they are located on the d-dimensional regular lattice. For the bottom-up hierarchical system and nonspatial public debate model, Galam studied the probability that a given opinion wins under the majority rule and, assuming that individuals' opinions are initially independent, making the initial number of supporters of a given opinion a binomial random variable. The first objective of this paper is to revisit Galam's result, assuming that the initial number of individuals in favor of a given opinion is a fixed deterministic number. Our analysis reveals phase transitions that are sharper under our assumption than under Galam's assumption, particularly with small population size. The second objective is to determine whether both opinions can coexist at equilibrium for the spatial public debate model under the proportional rule, which depends on the spatial dimension.

AB - This paper is concerned with the bottom-up hierarchical system and public debate model proposed by Galam (2008), as well as a spatial version of the public debate model. In all three models, there is a population of individuals who are characterized by one of two competing opinions, say opinion -1 and opinion +1. This population is further divided into groups of common size s. In the bottom-up hierarchical system, each group elects a representative candidate, whereas in the other two models, all the members of each group discuss at random times until they reach a consensus. At each election/discussion, the winning opinion is chosen according to Galam's majority rule: the opinion with the majority of representatives wins when there is a strict majority, while one opinion, say opinion -1, is chosen by default in the case of a tie. For the public debate models we also consider the following natural updating rule that we call proportional rule: the winning opinion is chosen at random with a probability equal to the fraction of its supporters in the group. The three models differ in term of their population structure: in the bottomup hierarchical system, individuals are located on a finite regular tree, in the nonspatial public debate model, they are located on a complete graph, and in the spatial public debate model, they are located on the d-dimensional regular lattice. For the bottom-up hierarchical system and nonspatial public debate model, Galam studied the probability that a given opinion wins under the majority rule and, assuming that individuals' opinions are initially independent, making the initial number of supporters of a given opinion a binomial random variable. The first objective of this paper is to revisit Galam's result, assuming that the initial number of individuals in favor of a given opinion is a fixed deterministic number. Our analysis reveals phase transitions that are sharper under our assumption than under Galam's assumption, particularly with small population size. The second objective is to determine whether both opinions can coexist at equilibrium for the spatial public debate model under the proportional rule, which depends on the spatial dimension.

KW - Interacting particle system

KW - Martingale

KW - Public debate

KW - Voting system

UR - http://www.scopus.com/inward/record.url?scp=84945418775&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84945418775&partnerID=8YFLogxK

M3 - Article

VL - 47

SP - 668

EP - 692

JO - Advances in Applied Probability

JF - Advances in Applied Probability

SN - 0001-8678

IS - 3

ER -