Freestanding self-assembled sulfonated pentablock terpolymer membranes for high flux pervaporation desalination

Elisabeth R. Thomas, Amit Jain, Stewart C. Mann, Yi Yang, Matthew D. Green, W. Shane Walker, François Perreault, Mary Laura Lind, Rafael Verduzco

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Pervaporation desalination has several advantages over competing desalination technologies, most notably an ability to select for or against volatile organic compounds and the ability to process high salinity feeds at a low transmembrane pressure. Pervaporation has not been commercialized for desalination applications because of its energy intensity. However, emerging processes such as hydraulic fracturing produce high total dissolved solids (>30–45 g L−1) byproduct streams that exceed the operational limits of traditional reverse osmosis and could be treated by pervaporation. Here, we demonstrate free-standing pervaporation membranes with excellent permeance and high salt removal based on a partially sulfonated pentablock terpolymer with the tradename Nexar™. Pervaporation membranes were easily cast from this material with desalination performances comparable or superior to commercially available membranes. We found that the polymer degree of sulfonation and casting solvent polarity had a significant impact on the membranes’ water uptake but only a modest impact on the pervaporation desalination performance. Membranes with a degree of sulfonation of 52% (2.0 meq g−1 IEC) and a casting solution composed of 50 wt% n-propanol and 50 wt% toluene achieved a water flux of 3.32 kg m−2 h−1 (permeance 135 kg m−2 h−1 bar−1) with 99.5% salt removal in pervaporation from a 32 g L−1 sodium chloride feed solution at room temperature. We demonstrated that dense, non-porous Nexar™ pervaporation membrane permeance and salt separation performance were superior to commercial pervaporation membranes and equivalent to commercial membrane distillation membranes, which have much larger pores. This study demonstrates that commercially available sulfonated pentablock terpolymers are excellent membranes for pervaporation desalination because of their ease of casting and excellent performance.

Original languageEnglish (US)
Article number118460
JournalJournal of Membrane Science
Volume613
DOIs
StatePublished - Nov 1 2020

Keywords

  • Desalination
  • Permeability
  • Pervaporation
  • Salt removal
  • Self-assembled sulfonated pentablock terpolymers

ASJC Scopus subject areas

  • Biochemistry
  • General Materials Science
  • Physical and Theoretical Chemistry
  • Filtration and Separation

Fingerprint

Dive into the research topics of 'Freestanding self-assembled sulfonated pentablock terpolymer membranes for high flux pervaporation desalination'. Together they form a unique fingerprint.

Cite this