Free energy calculation of mechanically unstable but dynamically stabilized bcc titanium

Sara Kadkhodaei, Qi Jun Hong, Axel Van De Walle

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

The phase diagram of numerous materials of technological importance features high-symmetry high-temperature phases that exhibit phonon instabilities. Leading examples include shape-memory alloys, as well as ferroelectric, refractory, and structural materials. The thermodynamics of these phases have proven challenging to handle by atomistic computational thermodynamic techniques due to the occurrence of constant anharmonicity-driven hopping between local low-symmetry distortions, while maintaining a high-symmetry time-averaged structure. To compute the free energy in such phases, we propose to explore the system's potential-energy surface by discrete sampling of local minima by means of a lattice gas Monte Carlo approach and by continuous sampling by means of a lattice dynamics approach in the vicinity of each local minimum. Given the proximity of the local minima, it is necessary to carefully partition phase space by using a Voronoi tessellation to constrain the domain of integration of the partition function in order to avoid double counting artifacts and enable an accurate harmonic treatment near each local minima. We consider the bcc phase of titanium as a prototypical example to illustrate our approach.

Original languageEnglish (US)
Article number064101
JournalPhysical Review B
Volume95
Issue number6
DOIs
StatePublished - Feb 2 2017
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Free energy calculation of mechanically unstable but dynamically stabilized bcc titanium'. Together they form a unique fingerprint.

Cite this