Abstract
Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide-bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu's parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate that Ryugu's parent body formed ~2 million years after the beginning of Solar System formation.
Original language | English (US) |
---|---|
Article number | eabn8671 |
Journal | Science |
Volume | 379 |
Issue number | 6634 |
DOIs | |
State | Published - Feb 24 2023 |
ASJC Scopus subject areas
- General
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Science, Vol. 379, No. 6634, eabn8671, 24.02.2023.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Formation and evolution of carbonaceous asteroid Ryugu
T2 - Direct evidence from returned samples
AU - Nakamura, T.
AU - Matsumoto, M.
AU - Amano, K.
AU - Enokido, Y.
AU - Zolensky, M. E.
AU - Mikouchi, T.
AU - Genda, H.
AU - Tanaka, S.
AU - Zolotov, M. Y.
AU - Kurosawa, K.
AU - Wakita, S.
AU - Hyodo, R.
AU - Nagano, H.
AU - Nakashima, D.
AU - Takahashi, Y.
AU - Fujioka, Y.
AU - Kikuiri, M.
AU - Kagawa, E.
AU - Matsuoka, M.
AU - Brearley, A. J.
AU - Tsuchiyama, A.
AU - Uesugi, M.
AU - Matsuno, J.
AU - Kimura, Y.
AU - Sato, M.
AU - Milliken, R. E.
AU - Tatsumi, E.
AU - Sugita, S.
AU - Hiroi, T.
AU - Kitazato, K.
AU - Brownlee, D.
AU - Joswiak, D. J.
AU - Takahashi, M.
AU - Ninomiya, K.
AU - Takahashi, T.
AU - Osawa, T.
AU - Terada, K.
AU - Brenker, F. E.
AU - Tkalcec, B. J.
AU - Vincze, L.
AU - Brunetto, R.
AU - Aléon-Toppani, A.
AU - Chan, Q. H.S.
AU - Roskosz, M.
AU - Viennet, J. C.
AU - Beck, P.
AU - Alp, E. E.
AU - Michikami, T.
AU - Nagaashi, Y.
AU - Tsuji, T.
AU - Ino, Y.
AU - Martinez, J.
AU - Han, J.
AU - Dolocan, A.
AU - Bodnar, R. J.
AU - Tanaka, M.
AU - Yoshida, H.
AU - Sugiyama, K.
AU - King, A. J.
AU - Fukushi, K.
AU - Suga, H.
AU - Yamashita, S.
AU - Kawai, T.
AU - Inoue, K.
AU - Nakato, A.
AU - Noguchi, T.
AU - Vilas, F.
AU - Hendrix, A. R.
AU - Jaramillo-Correa, C.
AU - Domingue, D. L.
AU - Dominguez, G.
AU - Gainsforth, Z.
AU - Engrand, C.
AU - Duprat, J.
AU - Russell, S. S.
AU - Bonato, E.
AU - Ma, C.
AU - Kawamoto, T.
AU - Wada, T.
AU - Watanabe, S.
AU - Endo, R.
AU - Enju, S.
AU - Riu, L.
AU - Rubino, S.
AU - Tack, P.
AU - Takeshita, S.
AU - Takeichi, Y.
AU - Takeuchi, A.
AU - Takigawa, A.
AU - Takir, D.
AU - Tanigaki, T.
AU - Taniguchi, A.
AU - Tsukamoto, K.
AU - Yagi, T.
AU - Yamada, S.
AU - Yamamoto, K.
AU - Yamashita, Y.
AU - Yasutake, M.
AU - Uesugi, K.
AU - Umegaki, I.
AU - Chiu, I.
AU - Ishizaki, T.
AU - Okumura, S.
AU - Palomba, E.
AU - Pilorget, C.
AU - Potin, S. M.
AU - Alasli, A.
AU - Anada, S.
AU - Araki, Y.
AU - Sakatani, N.
AU - Schultz, C.
AU - Sekizawa, O.
AU - Sitzman, S. D.
AU - Sugiura, K.
AU - Sun, M.
AU - Dartois, E.
AU - De Pauw, E.
AU - Dionnet, Z.
AU - Djouadi, Z.
AU - Falkenberg, G.
AU - Fujita, R.
AU - Fukuma, T.
AU - Gearba, I. R.
AU - Hagiya, K.
AU - Hu, M. Y.
AU - Kato, T.
AU - Kawamura, T.
AU - Kimura, M.
AU - Kubo, M. K.
AU - Langenhorst, F.
AU - Lantz, C.
AU - Lavina, B.
AU - Lindner, M.
AU - Zhao, J.
AU - Vekemans, B.
AU - Baklouti, D.
AU - Bazi, B.
AU - Borondics, F.
AU - Nagasawa, S.
AU - Nishiyama, G.
AU - Nitta, K.
AU - Mathurin, J.
AU - Matsumoto, T.
AU - Mitsukawa, I.
AU - Miura, H.
AU - Miyake, A.
AU - Miyake, Y.
AU - Yurimoto, H.
AU - Okazaki, R.
AU - Yabuta, H.
AU - Naraoka, H.
AU - Sakamoto, K.
AU - Tachibana, S.
AU - Connolly, H. C.
AU - Lauretta, D. S.
AU - Yoshitake, M.
AU - Yoshikawa, M.
AU - Yoshikawa, K.
AU - Yoshihara, K.
AU - Yokota, Y.
AU - Yogata, K.
AU - Yano, H.
AU - Yamamoto, Y.
AU - Yamamoto, D.
AU - Yamada, M.
AU - Yamada, T.
AU - Yada, T.
AU - Wada, K.
AU - Usui, T.
AU - Tsukizaki, R.
AU - Terui, F.
AU - Takeuchi, H.
AU - Takei, Y.
AU - Iwamae, A.
AU - Soejima, H.
AU - Shirai, K.
AU - Shimaki, Y.
AU - Senshu, H.
AU - Sawada, H.
AU - Saiki, T.
AU - Ozaki, M.
AU - Ono, G.
AU - Okada, T.
AU - Ogawa, N.
AU - Ogawa, K.
AU - Noguchi, R.
AU - Noda, H.
AU - Nishimura, M.
AU - Namiki, N.
AU - Nakazawa, S.
AU - Morota, T.
AU - Miyazaki, A.
AU - Miura, A.
AU - Mimasu, Y.
AU - Matsumoto, K.
AU - Kumagai, K.
AU - Kouyama, T.
AU - Kikuchi, S.
AU - Kawahara, K.
AU - Kameda, S.
AU - Iwata, T.
AU - Ishihara, Y.
AU - Ishiguro, M.
AU - Ikeda, H.
AU - Hosoda, S.
AU - Honda, R.
AU - Honda, C.
AU - Hitomi, Y.
AU - Hirata, N.
AU - Hirata, N.
AU - Hayashi, T.
AU - Hayakawa, M.
AU - Hatakeda, K.
AU - Furuya, S.
AU - Fukai, R.
AU - Fujii, A.
AU - Cho, Y.
AU - Arakawa, M.
AU - Abe, M.
AU - Watanabe, S.
AU - Tsuda, Y.
N1 - Funding Information: This work was supported by KAKENHI from the Japanese Society for Promotion of Science (JSPS); grants JP20H00188 and 19H05183 to T.Na.; JP19K14776 to M.Matsum.; 21K18645 to T.Mik. and K.Sugiy.; JP20H00205 to A.Ts., M.Matsum., A.Miyak., and J.Mats.; 17H06458 to K.F., Y.Taka., S.Yamas., and M.Kim.; JP17H06459 to T.Na., T.U., S.Wat., M.Matsuo., N.N., T.Mo., T.Ok., Y.S., N.S., and R.N.; JP15H05695 to A.Ts. and K.U.; 20H05846 to S.Tac.; JP17H06457 to H.G.; JP19H00726 to K.Kur., H. G., and T.Mik.; JP21J13337 to K.A.; JP18H05456 and JP20H00189 to K.Sugiy.; 18H05463 to T.Tak., S.Nakas., and S.Wat.; 18H05460 to K.Nin. and T.Os.; 18H05464 to Y.Miy.; 18H05457 to K.Nin., T.Tak., S.Wat., and Y.Miy.; and JP18H05479 to M.U. This work was also supported by the JSPS Core-to-Core program “International Network of Planetary Sciences” and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (grants JPMXS0450200421 and JPMXS0450200521 to S.S.); A.J.K. acknowledges funding support from UK Research and Innovation (UKRI) grant MR/T020261/1. A.J.B. acknowledges funding support from NASA Emerging Worlds grant 80NSSC18K0731. P.B. acknowledges funding from the European Research Council (ERC) under grant agreement 771691 (Solarys) and the CNES. R.B. and F.B. acknowledge support by Region Ile-de-France (DIM-ACAV) and SOLEIL for the FTIR micro-spectroscopy measurements. F.E.B and B.J.T. acknowledge funding from German Research Foundation DFG grant BR2015/38-1 and Dr. Ralph Schwieter Foundation. L.V. and B.B. acknowledge support from Ghent University Special Research Fund Grants BOF-01GC1517 and Research Foundation Flanders grants G0D5221N and 1205322N. B.V. acknowledges funding from BOF17-GOA-015. P.T. acknowledges funding from Ghent University Special Research Fund Grants BOF20/PDO/037 and Research Foundation Flanders grants G0D5221N and 1205322N. M.R. acknowledges the French PICS-CNRS funding program, the French ANR (CLASSY) and the FACCTS program, and funding from the DOE Office of Science Basic Energy Sciences, under contract DE-AC02-06CH11357. M.R. and J.C.V. benefited from the Ile de France DIM ACAV+ funding (PARYUGU). M.Y.Z. is supported by NASA grants 80NSSC19K0786 and 80NSSC19K0313. A.Ts. is supported by Chinese Academy of Sciences President's International Fellowship Initiative, grant 2019VCA0004. D.L.D. is supported by NASA grants NNX16AL34G and 80ARC017M00005. E.P. acknowledges funding from Italian Space Agency (ASI) through contract 2018-27-HH-0. F.V., A.R.H., and C.J. acknowledge funding from NASA's TREX node of the Solar System Exploration Research Virtual Institute 2016 (SSERVI16) Cooperative Agreement (NNH16ZDA001N). G.D. acknowledges NASA LARS funding of NanoIR technique development (80NSSC19K1051). M.E.Z. is supported by NASA Hayabusa2 Mission Participating Scientist Program. M.Tan. is supported by JSPS KAKENHI grant 21K03654. C.E., J.D., E.Da., and J.Math. acknowledge funding from CNES (MIAMI2), DIM-ACAV+ (C3E), LabEx P2IO, and ANR (COMETOR ANR-18-CE31-0011). R.B., A.Alé., Z.Di., C.L., Z.Dj., D.Ba., L.R., S.R., and C.P. acknowledge support by the CNES. K.A. is supported an GP-EES Research Grant. Z.G. acknowledges the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Publisher Copyright: © 2023 American Association for the Advancement of Science. All rights reserved.
PY - 2023/2/24
Y1 - 2023/2/24
N2 - Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide-bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu's parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate that Ryugu's parent body formed ~2 million years after the beginning of Solar System formation.
AB - Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide-bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu's parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate that Ryugu's parent body formed ~2 million years after the beginning of Solar System formation.
UR - http://www.scopus.com/inward/record.url?scp=85148772806&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148772806&partnerID=8YFLogxK
U2 - 10.1126/science.abn8671
DO - 10.1126/science.abn8671
M3 - Article
C2 - 36137011
AN - SCOPUS:85148772806
SN - 0036-8075
VL - 379
JO - Science
JF - Science
IS - 6634
M1 - eabn8671
ER -