Abstract
We have studied isolated semiconductor nanocrystal quantum dots (QDs) and small clusters of QDs by singlemolecule time-correlated single-photon counting, from which fluorescence intensity trajectories, autocorrelation functions, decay histograms, and lifetime-intensity distributions have been constructed. These measurements confirm that QD clusters exhibit unique fluorescence behavior not observed in isolated QDs. In particular, the QD clusters exhibit a short-lifetime component in their fluorescence decay that is correlated with low fluorescence intensity of the cluster. A model based on nonradiative energy transfer to QDs within a cluster that have smaller energy gaps, combined with independent blinking for the QDs in a cluster, accounts for the main experimental features.
Original language | English (US) |
---|---|
Pages (from-to) | 14831-14837 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry C |
Volume | 114 |
Issue number | 35 |
DOIs | |
State | Published - Sep 9 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films